Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 154 No. 4 (2024)

Genomic characteristics of clinical non-toxigenic Vibrio cholerae isolates in Switzerland: a cross-sectional study

DOI
https://doi.org/10.57187/s.3437
Cite this as:
Swiss Med Wkly. 2024;154:3437
Published
02.04.2024

Summary

STUDY AIMS: Although non-toxigenic Vibrio cholerae lack the ctxAB genes encoding cholera toxin, they can cause diarrhoeal disease and outbreaks in humans. In Switzerland, V. cholerae is a notifiable pathogen and all clinical isolates are analysed at the National Reference Laboratory for Enteropathogenic Bacteria and Listeria. Up to 20 infections are reported annually. In this study, we investigated the population structure and genetic characteristics of non-toxigenic V. cholerae isolates collected over five years.

METHODS: V. cholerae isolates were serotyped and non-toxigenic isolates identified using a ctxA-specific PCR. Following Illumina whole-genome sequencing, genome assemblies were screened for virulence and antibiotic resistance genes. Phylogenetic analyses were performed in the context of 965 publicly available V. cholerae genomes.

RESULTS: Out of 33 V. cholerae infections reported between January 2017 and January 2022 in Switzerland, 31 were caused by ctxA-negative isolates. These non-toxigenic isolates originated from gastrointestinal (n = 29) or extraintestinal (n = 2) sites. They were phylogenetically diverse and belonged to 29 distinct sequence types. Two isolates were allocated to the lineage L3b, a ctxAB-negative but tcpA-positive clade previously associated with regional outbreaks. The remaining 29 isolates were placed in lineage L4, which is associated with environmental strains. Genes or mutations associated with reduced susceptibility to the first-line antibiotics fluoroquinolones and tetracyclines were identified in 11 and 3 isolates, respectively. One isolate was predicted to be multidrug resistant.

CONCLUSIONS: V. cholerae infections in Switzerland are rare and predominantly caused by lowly virulent ctxAB-negative and tcpA-negative strains. As V. cholerae is not endemic in Switzerland, cases are assumed to be acquired predominantly during travel. This assumption was supported by the phylogenetic diversity of the analysed isolates.

References

  1. Wolfe M, Kaur M, Yates T, Woodin M, Lantagne D. A Systematic Review and Meta-Analysis of the Association between Water, Sanitation, and Hygiene Exposures and Cholera in Case-Control Studies. Am J Trop Med Hyg. 2018 Aug;99(2):534–45. 10.4269/ajtmh.17-0897
  2. Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis. 2015 Jun;9(6):e0003832. 10.1371/journal.pntd.0003832
  3. WHO. Disease Outbreak News; Cholera – Global situation [Internet]. 2022 [cited 2023 Jun 28]. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON426
  4. Kuninobu KI, Takemura T, Takizawa Y, Hasebe F, Yamashiro T. Whole-genome analysis of a Vibrio cholerae O1 biotype classical strain isolated in 1946 in Sasebo city, Nagasaki prefecture, from a returnee from the northeast part of China. Trop Med Health. 2023 Feb;51(1):5. 10.1186/s41182-023-00500-4
  5. Morita D, Morita M, Alam M, Mukhopadhyay AK, Johura FT, Sultana M, et al. Whole-Genome Analysis of Clinical Vibrio cholerae O1 in Kolkata, India, and Dhaka, Bangladesh, Reveals Two Lineages of Circulating Strains, Indicating Variation in Genomic Attributes. MBio. 2020 Nov;11(6):e01227-20. 10.1128/mBio.01227-20
  6. Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S, et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011 Aug;477(7365):462–5. 10.1038/nature10392
  7. Wang H, Yang C, Sun Z, Zheng W, Zhang W, Yu H, et al. Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Negl Trop Dis. 2020 Feb;14(2):e0008046. 10.1371/journal.pntd.0008046
  8. Kaper JB, Morris JG Jr, Levine MM. Cholera. Clin Microbiol Rev. 1995 Jan;8(1):48–86. 10.1128/CMR.8.1.48
  9. Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA. 1987 May;84(9):2833–7. 10.1073/pnas.84.9.2833
  10. Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA. 1998 Mar;95(6):3134–9. 10.1073/pnas.95.6.3134
  11. Trubiano JA, Lee JY, Valcanis M, Gregory J, Sutton BA, Holmes NE. Non-O1, non-O139 Vibrio cholerae bacteraemia in an Australian population. Intern Med J. 2014 May;44(5):508–11. 10.1111/imj.12409
  12. Cariri FA, Costa AP, Melo CC, Theophilo GN, Hofer E, de Melo Neto OP, et al. Characterization of potentially virulent non-O1/non-O139 Vibrio cholerae strains isolated from human patients. Clin Microbiol Infect. 2010 Jan;16(1):62–7. 10.1111/j.1469-0691.2009.02763.x
  13. Hao T, Zheng W, Wu Y, Yu H, Qian X, Yang C, et al. Population genomics implies potential public health risk of two non-toxigenic Vibrio cholerae lineages. Infect Genet Evol. 2023 Aug;112:105441. 10.1016/j.meegid.2023.105441
  14. Pal A, Saha PK, Nair GB, Yamasaki S, Takeda T, Takeda Y, et al. Clonal analysis of non-toxigenic Vibrio cholerae O1 associated with an outbreak of cholera. Indian J Med Res. 1999 Jun;109:208–11.
  15. Zheng W, Yu H. Wang H qiu, Zhang W, Pan J cao [Molecular characteristics and antibiotic resistances of Vibrio cholerae O1 isolates in Hangzhou in 2009]. Zhonghua Yu Fang Yi Xue Za Zhi. 2011 Oct;45(10):895–8.
  16. Onishchenko GG, Lomov IM, Moskvitina EA, Podosinnikova LS, Vodianitskaia SI, Prometnoĭ VI, et al. [Cholera caused by Vibrio cholerae O1 ctxAB- tcpA+]. Zh Mikrobiol Epidemiol Immunobiol. 2007;(1):23–9.
  17. Nair GB, Safa A, Bhuiyan NA, Nusrin S, Murphy D, Nicol C, et al. Isolation of Vibrio cholerae O1 strains similar to pre-seventh pandemic El Tor strains during an outbreak of gastrointestinal disease in an island resort in Fiji. J Med Microbiol. 2006 Nov;55(Pt 11):1559–62. 10.1099/jmm.0.46734-0
  18. Monakhova EV, Pisanov RV, Mikhas’ NK. [The genome polymorphism of Vibrio cholerae ctxAB(-) strains, containing the proximal part of the CTX element]. Zh Mikrobiol Epidemiol Immunobiol. 2004;(1):23–9.
  19. Monakhova EV. Phenotypic and Molecular Characteristics of Epidemic and Non-epidemic Vibrio cholerae Strains Isolated in Russia and Certain Countries of Commonwealth of Independent States (CIS). Epidemiological and Molecular Aspects on Cholera. New York (NY): Springer New York; 2011. pp. 51–78. 10.1007/978-1-60327-265-0_4
  20. Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: understanding the ecology of resistance genes and mechanisms. Vaccine. 2020 Feb;38 Suppl 1:A83–92. 10.1016/j.vaccine.2019.06.031
  21. Gutierrez-Rodarte M, Kolappan S, Burrell BA, Craig L. The Vibrio cholerae minor pilin TcpB mediates uptake of the cholera toxin phage CTXφ. J Biol Chem. 2019 Oct;294(43):15698–710. 10.1074/jbc.RA119.009980
  22. Udden SM, Zahid MS, Biswas K, Ahmad QS, Cravioto A, Nair GB, et al. Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci USA. 2008 Aug;105(33):11951–6. 10.1073/pnas.0805560105
  23. BAG. Zahlen zu Infektionskrankheiten - Cholera; Bundesamt für Gesundheit BAG [Internet]. 2023 [cited 2023 Jun 6]. Available from: https://www.bag.admin.ch/bag/de/home/zahlen-und-statistiken/zahlen-zu-infektionskrankheiten.exturl.html/aHR0cHM6Ly9tZWxkZXN5c3RlbWUuYmFnYXBwcy5jaC9pbmZyZX/BvcnRpbmcvZGF0ZW5kZXRhaWxzL2QvY2hvbGVyYS5odG1sP3dl/YmdyYWI9aWdub3Jl.html
  24. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018 Sep;34(17):i884–90. 10.1093/bioinformatics/bty560
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012 May;19(5):455–77. 10.1089/cmb.2012.0021
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015 Jul;25(7):1043–55. 10.1101/gr.186072.114
  27. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15(11):524. 10.1186/s13059-014-0524-x
  28. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004 Mar;32(5):1792–7. 10.1093/nar/gkh340
  29. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015 Jan;32(1):268–74. 10.1093/molbev/msu300
  30. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021 Jul;49 W1:W293–6. 10.1093/nar/gkab301
  31. Inkscape Project. Inkscape 1.2.2 [Internet]. 2022 [cited 2023 Jul 6]. Available from: https://inkscape.org
  32. Jolley KA, Bray JE, Maiden MC. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018 Sep;3:124. 10.12688/wellcomeopenres.14826.1
  33. Lee I, Ha SM, Baek MG, Kim DW, Yi H, Chun J. VicPred: A Vibrio cholerae Genotype Prediction Tool. Front Microbiol. 2021 Sep;12:691895. 10.3389/fmicb.2021.691895
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul;30(14):2068–9. 10.1093/bioinformatics/btu153
  35. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016 Jan;44 D1:D694–7. 10.1093/nar/gkv1239
  36. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH, et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep. 2021 Jun;11(1):12728. 10.1038/s41598-021-91456-0
  37. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020 Dec;75(12):3491–500. 10.1093/jac/dkaa345
  38. Vinothkumar K, Kumar GN, Bhardwaj AK. Characterization of Vibrio fluvialis qnrVC5 Gene in Native and Heterologous Hosts: Synergy of qnrVC5 with other Determinants in Conferring Quinolone Resistance. Front Microbiol. 2016 Feb;7:146. 10.3389/fmicb.2016.00146
  39. Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD, Ketley JM, et al. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA. 1991 Jun;88(12):5242–6. 10.1073/pnas.88.12.5242
  40. Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci USA. 1993 Jun;90(11):5267–71. 10.1073/pnas.90.11.5267
  41. Purdy A, Rohwer F, Edwards R, Azam F, Bartlett DH. A glimpse into the expanded genome content of Vibrio cholerae through identification of genes present in environmental strains. J Bacteriol. 2005 May;187(9):2992–3001. 10.1128/JB.187.9.2992-3001.2005
  42. Fleischmann S, Herrig I, Wesp J, Stiedl J, Reifferscheid G, Strauch E, et al. Prevalence and Distribution of Potentially Human Pathogenic Vibrio spp. on German North and Baltic Sea Coasts. Front Cell Infect Microbiol. 2022 Jul;12:846819. 10.3389/fcimb.2022.846819
  43. Greig DR, Schaefer U, Octavia S, Hunter E, Chattaway MA, Dallman TJ, et al. Evaluation of Whole-Genome Sequencing for Identification and Typing of Vibrio cholerae. J Clin Microbiol. 2018 Oct;56(11):e00831-18. 10.1128/JCM.00831-18
  44. Ottaviani D, Leoni F, Rocchegiani E, Santarelli S, Masini L, Di Trani V, et al. Prevalence and virulence properties of non-O1 non-O139 Vibrio cholerae strains from seafood and clinical samples collected in Italy. Int J Food Microbiol. 2009 Jun;132(1):47–53. 10.1016/j.ijfoodmicro.2009.03.014
  45. Robert-Pillot A, Copin S, Himber C, Gay M, Quilici ML. Occurrence of the three major Vibrio species pathogenic for human in seafood products consumed in France using real-time PCR. Int J Food Microbiol. 2014 Oct;189:75–81. 10.1016/j.ijfoodmicro.2014.07.014
  46. Vu TT, Alter T, Huehn S. Prevalence of Vibrio spp. in Retail Seafood in Berlin, Germany. J Food Prot. 2018 Apr;81(4):593–7. 10.4315/0362-028X.JFP-17-366
  47. Schärer K, Savioz S, Cernela N, Saegesser G, Stephan R. Occurrence of Vibrio spp. in fish and shellfish collected from the Swiss market. J Food Prot. 2011 Aug;74(8):1345–7. 10.4315/0362-028X.JFP-11-001
  48. Schwartz K, Hammerl JA, Göllner C, Strauch E. Environmental and Clinical Strains of Vibrio cholerae Non-O1, Non-O139 From Germany Possess Similar Virulence Gene Profiles. Front Microbiol. 2019 Apr;10:733. 10.3389/fmicb.2019.00733
  49. Greig DR, Schaefer U, Octavia S, Hunter E, Chattaway MA, Dallman TJ, et al. Evaluation of Whole-Genome Sequencing for Identification and Typing of Vibrio cholerae. J Clin Microbiol. 2018 Oct;56(11):e00831-18. 10.1128/JCM.00831-18
  50. Rijal N, Acharya J, Adhikari S, Upadhaya BP, Shakya G, Kansakar P, et al. Changing epidemiology and antimicrobial resistance in Vibrio cholerae: AMR surveillance findings (2006-2016) from Nepal. BMC Infect Dis. 2019 Sep;19(1):801. 10.1186/s12879-019-4432-2
  51. Sack RB, Rahman M, Yunus M, Khan EH. Antimicrobial resistance in organisms causing diarrheal disease. Clin Infect Dis. 1997 Jan;24 Suppl 1:S102–5. 10.1093/clinids/24.Supplement_1.S102
  52. Sack DA, Lyke C, Mclaughlin C, Suwanvanichkij V. Antimicrobial resistance in shigellosis, cholera and campylobacteriosis - World Health Organization [Internet]. 2001 [cited 2023 Oct 31]. Available from: https://iris.who.int/handle/10665/66875
  53. Garg P, Sinha S, Chakraborty R, Bhattacharya SK, Nair GB, Ramamurthy T, et al. Emergence of fluoroquinolone-resistant strains of Vibrio cholerae O1 biotype El Tor among hospitalized patients with cholera in Calcutta, India. Antimicrob Agents Chemother. 2001 May;45(5):1605–6. 10.1128/AAC.45.5.1605-1606.2001
  54. Verma J, Bag S, Saha B, Kumar P, Ghosh TS, Dayal M, et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc Natl Acad Sci USA. 2019 Mar;116(13):6226–31. 10.1073/pnas.1900141116
  55. Morita D, Takahashi E, Morita M, Ohnishi M, Mizuno T, Miyoshi SI, et al. Genomic characterization of antibiotic resistance-encoding genes in clinical isolates of Vibrio cholerae non-O1/non-O139 strains from Kolkata, India: generation of novel types of genomic islands containing plural antibiotic resistance genes. Microbiol Immunol. 2020 Jun;64(6):435–44. 10.1111/1348-0421.12790
  56. Bhandari M, Rathnayake IU, Huygens F, Jennison AV. Clinical and Environmental Vibrio cholerae Non-O1, Non-O139 Strains from Australia Have Similar Virulence and Antimicrobial Resistance Gene Profiles. Microbiol Spectr. 2023 Feb;11(1):e0263122. 10.1128/spectrum.02631-22
  57. Lepuschitz S, Baron S, Larvor E, Granier SA, Pretzer C, Mach RL, et al. Phenotypic and Genotypic Antimicrobial Resistance Traits of Vibrio cholerae Non-O1/Non-O139 Isolated From a Large Austrian Lake Frequently Associated With Cases of Human Infection. Front Microbiol. 2019 Nov;10:2600. 10.3389/fmicb.2019.02600
  58. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011 Oct;24(4):718–33. 10.1128/CMR.00002-11
  59. Schar D, Klein EY, Laxminarayan R, Gilbert M, Van Boeckel TP. Global trends in antimicrobial use in aquaculture. Scientific Reports 2020 10:1 [Internet]. 2020 Dec 14 [cited 2023 Aug 24];10(1):1–9. Available from: https://www.nature.com/articles/s41598-020-78849-3 10.1038/s41598-020-78849-3
  60. Maggiore A, Afonso A, Barrucci F, De Sanctis G. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Support Publ. 2020 Jun;17(6).
  61. Vezzulli L, Baker-Austin C, Kirschner A, Pruzzo C, Martinez-Urtaza J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ Microbiol. 2020 Oct;22(10):4342–55. 10.1111/1462-2920.15040
  62. Constantin de Magny G, Colwell RR. Cholera and climate: a demonstrated relationship. Trans Am Clin Climatol Assoc. 2009;120:119–28.

Most read articles by the same author(s)