Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 153 No. 3 (2023)

Chemotherapy-related agranulocytosis as a predictive factor for germline BRCA1 pathogenic variants in breast cancer patients: a retrospective cohort study

  • Noémie Lang
  • Aurélie Ayme
  • Chang Ming
  • Jean‑Damien Combes
  • Victor N. Chappuis
  • Alex Friedlaender
  • Aurélie Vuilleumier
  • José L. Sandoval
  • Valeria Viassolo
  • Pierre O. Chappuis
  • S. Intidhar Labidi-Galy
DOI
https://doi.org/10.57187/smw.2023.40055
Cite this as:
Swiss Med Wkly. 2023;153:40055
Published
30.03.2023

Summary

BACKGROUND: Carriers of germline pathogenic variants of the BRCA1 gene (gBRCA1) tend to have a higher incidence of haematological toxicity upon exposure to chemotherapy. We hypothesised that the occurrence of agranulocytosis during the first cycle of (neo-)adjuvant chemotherapy (C1) in breast cancer (BC) patients could predict gBRCA1 pathogenic variants.

PATIENTS AND METHODS: The study population included non-metastatic BC patients selected for genetic counselling at Hôpitaux Universitaires de Genève (Jan. 1998 to Dec. 2017) with available mid-cycle blood counts performed during C1. The BOADICEA and Manchester scoring system risk-prediction models were applied. The primary outcome was the predicted likelihood of harbouring gBRCA1 pathogenic variants among patients presenting agranulocytosis during C1.

RESULTS: Three hundred seven BC patients were included: 32 (10.4%) gBRCA1, 27 (8.8%) gBRCA2, and 248 (81.1%) non-heterozygotes. Mean age at diagnosis was 40 years. Compared with non-heterozygotes, gBRCA1 heterozygotes more frequently had grade 3 BC (78.1%; p = 0.014), triple-negative subtype (68.8%; p <0.001), bilateral BC (25%; p = 0.004), and agranulocytosis following the first cycle of (neo-)adjuvant chemotherapy (45.8%; p = 0.002). Agranulocytosis and febrile neutropenia that developed following the first cycle of chemotherapy were independently predictive for gBRCA1 pathogenic variants (odds ratio: 6.1; p = 0.002). The sensitivity, specificity, positive predictive value, and negative predictive value for agranulocytosis predicting gBRCA1 were 45.8% (25.6–67.2%), 82.8% (77.5–87.3%), 22.9% (6.1–37.3%), and 93.4% (88.9–96.4%), respectively. Agranulocytosis substantially improved the positive predictive value of the risk-prediction models used for gBRCA1 evaluation.

CONCLUSION: Agranulocytosis following the first cycle of (neo-)adjuvant chemotherapy is an independent predictive factor for gBRCA1 detection in non-metastatic BC patients.

References

  1. Kuchenbaecker KB , Hopper JL , Barnes DR , Phillips KA , Mooij TM , Roos-Blom MJ , et al.; BRCA1 and BRCA2 Cohort Consortium . Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017 Jun;317(23):2402–16. https://doi.org/10.1001/jama.2017.7112 DOI: https://doi.org/10.1001/jama.2017.7112
  2. Antoniou A , Pharoah PD , Narod S , Risch HA , Eyfjord JE , Hopper JL , et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies [published correction appears in Am J Hum Genet. 2003 Sep;73(3):709]. Am J Hum Genet. 2003 May;72(5):1117–30. https://doi.org/10.1086/375033 DOI: https://doi.org/10.1086/375033
  3. De Talhouet S , Peron J , Vuilleumier A , Friedlaender A , Viassolo V , Ayme A , et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes [published correction appears in Sci Rep. 2020 Nov 2;10(1):19248]. Sci Rep. 2020 Apr;10(1):7073. https://doi.org/10.1038/s41598-020-63759-1 DOI: https://doi.org/10.1038/s41598-020-63759-1
  4. Tutt AN , Garber JE , Kaufman B , Viale G , Fumagalli D , Rastogi P , et al.; OlympiA Clinical Trial Steering Committee and Investigators . Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer [published online ahead of print, 2021 Jun 3]. N Engl J Med. 2021 Jun;384(25):2394–405. https://doi.org/10.1056/NEJMoa2105215 DOI: https://doi.org/10.1056/NEJMoa2105215
  5. Daly MB , Pilarski R , Yurgelun MB , Berry MP , Buys SS , Dickson P , et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020. J Natl Compr Canc Netw. 2020 Apr;18(4):380–91. https://doi.org/10.6004/jnccn.2020.0017 DOI: https://doi.org/10.6004/jnccn.2020.0017
  6. NICE Guidelines Committee . Familial Breast Cancer: Classification, Care and Managing Breast Cancer and Related Risks in People with a Family History of Breast Cancer. London, UK: National Institute for Health and Care Excellence. Published date: 25 June 2013 Last updated: 20 November 2019. www.nice.org.uk/guidance/cg164
  7. Paluch-Shimon S , Cardoso F , Sessa C , Balmana J , Cardoso MJ , Gilbert F , et al.; ESMO Guidelines Committee . Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO Clinical Practice Guidelines for cancer prevention and screening [published correction appears in Ann Oncol. 2017 Jul 1;28(suppl_4):iv167-iv168]. Ann Oncol. 2016 Sep;27 suppl 5:v103–10. https://doi.org/10.1093/annonc/mdw327 DOI: https://doi.org/10.1093/annonc/mdw327
  8. Chen S , Parmigiani G . Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol. 2007 Apr;25(11):1329–33. https://doi.org/10.1200/JCO.2006.09.1066 DOI: https://doi.org/10.1200/JCO.2006.09.1066
  9. Antoniou AC , Pharoah PP , Smith P , Easton DF . The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004 Oct;91(8):1580–90. https://doi.org/10.1038/sj.bjc.6602175 DOI: https://doi.org/10.1038/sj.bjc.6602175
  10. Antoniou AC , Cunningham AP , Peto J , et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions [published correction appears in Br J Cancer. 2008 Jun 17;98(12):2015. Passini, B [corrected to Pasini, B]]. Br J Cancer. 2008;98(8):1457–66. https://doi.org/10.1038/sj.bjc.6604305 DOI: https://doi.org/10.1038/sj.bjc.6604305
  11. Lee A , Mavaddat N , Wilcox AN , Cunningham AP , Carver T , Hartley S , et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors [published correction appears in Genet Med. 2019 Feb 21]. Genet Med. 2019 Aug;21(8):1708–18. https://doi.org/10.1038/s41436-018-0406-9 DOI: https://doi.org/10.1038/s41436-018-0406-9
  12. Evans DG , Eccles DM , Rahman N , Young K , Bulman M , Amir E , et al. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet. 2004 Jun;41(6):474–80. https://doi.org/10.1136/jmg.2003.017996 DOI: https://doi.org/10.1136/jmg.2003.017996
  13. Evans DG , Lalloo F , Cramer A , Jones EA , Knox F , Amir E , et al. Addition of pathology and biomarker information significantly improves the performance of the Manchester scoring system for BRCA1 and BRCA2 testing. J Med Genet. 2009 Dec;46(12):811–7. https://doi.org/10.1136/jmg.2009.067850 DOI: https://doi.org/10.1136/jmg.2009.067850
  14. Evans DG , Harkness EF , Plaskocinska I , Wallace AJ , Clancy T , Woodward ER , et al. Pathology update to the Manchester Scoring System based on testing in over 4000 families. J Med Genet. 2017 Oct;54(10):674–81. https://doi.org/10.1136/jmedgenet-2017-104584 DOI: https://doi.org/10.1136/jmedgenet-2017-104584
  15. Gail MH , Brinton LA , Byar DP , Corle DK , Green SB , Schairer C , et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989 Dec;81(24):1879–86. https://doi.org/10.1093/jnci/81.24.1879 DOI: https://doi.org/10.1093/jnci/81.24.1879
  16. Parmigiani G , Berry D , Aguilar O . Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998 Jan;62(1):145–58. https://doi.org/10.1086/301670 DOI: https://doi.org/10.1086/301670
  17. Tyrer J , Duffy SW , Cuzick J . A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004 Apr;23(7):1111–30. https://doi.org/10.1002/sim.1668 DOI: https://doi.org/10.1002/sim.1668
  18. Rebbeck TR , Mitra N , Wan F , Sinilnikova OM , Healey S , McGuffog L , et al.; CIMBA Consortium . Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015 Apr;313(13):1347–61. https://doi.org/10.1001/jama.2014.5985 DOI: https://doi.org/10.1001/jama.2014.5985
  19. Li J , Wen WX , Eklund M , Kvist A , Eriksson M , Christensen HN , et al. Prevalence of BRCA1 and BRCA2 pathogenic variants in a large, unselected breast cancer cohort. Int J Cancer. 2019 Mar;144(5):1195–204. https://doi.org/10.1002/ijc.31841 DOI: https://doi.org/10.1002/ijc.31841
  20. Lang GT , Shi JX , Hu X , Zhang CH , Shan L , Song CG , et al. The spectrum of BRCA mutations and characteristics of BRCA-associated breast cancers in China: screening of 2,991 patients and 1,043 controls by next-generation sequencing. Int J Cancer. 2017 Jul;141(1):129–42. https://doi.org/10.1002/ijc.30692 DOI: https://doi.org/10.1002/ijc.30692
  21. Peshkin BN , Alabek ML , Isaacs C . BRCA1/2 mutations and triple negative breast cancers. Breast Dis. 2010;32(1-2):25–33. https://doi.org/10.3233/BD-2010-0306 DOI: https://doi.org/10.3233/BD-2010-0306
  22. Lakhani SR , Reis-Filho JS , Fulford L , Penault-Llorca F , van der Vijver M , Parry S , et al.; Breast Cancer Linkage Consortium . Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res. 2005 Jul;11(14):5175–80. https://doi.org/10.1158/1078-0432.CCR-04-2424 DOI: https://doi.org/10.1158/1078-0432.CCR-04-2424
  23. Lakhani SR , Jacquemier J , Sloane JP , Gusterson BA , Anderson TJ , van de Vijver MJ , et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998 Aug;90(15):1138–45. https://doi.org/10.1093/jnci/90.15.1138 DOI: https://doi.org/10.1093/jnci/91.1.90a
  24. Roy R , Chun J , Powell SN . BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011 Dec;12(1):68–78. https://doi.org/10.1038/nrc3181 DOI: https://doi.org/10.1038/nrc3181
  25. Drooger JC , Heemskerk-Gerritsen BA , Smallenbroek N , Epskamp C , Seynaeve CM , Jager A . Toxicity of (neo)adjuvant chemotherapy for BRCA1- and BRCA2-associated breast cancer. Breast Cancer Res Treat. 2016 Apr;156(3):557–66. https://doi.org/10.1007/s10549-016-3777-0 DOI: https://doi.org/10.1007/s10549-016-3777-0
  26. Huszno J , Budryk M , Kołosza Z , Nowara E . The influence of BRCA1/BRCA2 mutations on toxicity related to chemotherapy and radiotherapy in early breast cancer patients. Oncology. 2013;85(5):278–82. https://doi.org/10.1159/000354834 DOI: https://doi.org/10.1159/000354834
  27. Huszno J , Budryk M , Kołosza Z , Nowara E . The risk factors of toxicity during chemotherapy and radiotherapy in breast cancer patients according to the presence of BRCA gene mutation. Contemp Oncol (Pozn). 2015;19(1):72–6. https://doi.org/10.5114/wo.2015.50014 DOI: https://doi.org/10.5114/wo.2015.50014
  28. Tomao F , Musacchio L , Di Mauro F , Boccia SM , Di Donato V , Giancotti A , et al. Is BRCA mutational status a predictor of platinum-based chemotherapy related hematologic toxicity in high-grade serous ovarian cancer patients? Gynecol Oncol. 2019 Jul;154(1):138–43. https://doi.org/10.1016/j.ygyno.2019.04.009 DOI: https://doi.org/10.1016/j.ygyno.2019.04.009
  29. Weitzner O , Yagur Y , Kadan Y , Beiner ME , Fishman A , Ben Ezry E , et al. Chemotherapy Toxicity in BRCA Mutation Carriers Undergoing First-Line Platinum-Based Chemotherapy. Oncologist. 2019 Dec;24(12):e1471–5. https://doi.org/10.1634/theoncologist.2019-0272 DOI: https://doi.org/10.1634/theoncologist.2019-0272
  30. Kotsopoulos J , Willows K , Trat S , Kim RH , Volenik A , Sun P , et al. BRCA mutation status is not associated with increased hematologic toxicity among patients undergoing platinum‐based chemotherapy for ovarian cancer. Int J Gynecol Cancer. 2018 Jan;28(1):69–76. https://doi.org/10.1097/IGC.0000000000001144 DOI: https://doi.org/10.1097/IGC.0000000000001144
  31. Shanley S , McReynolds K , Ardern-Jones A , Ahern R , Fernando I , Yarnold J , et al.; Royal Marsden NHS Foundation Trust . Acute chemotherapy-related toxicity is not increased in BRCA1 and BRCA2 mutation carriers treated for breast cancer in the United Kingdom. Clin Cancer Res. 2006 Dec;12(23):7033–8. https://doi.org/10.1158/1078-0432.CCR-06-1246 DOI: https://doi.org/10.1158/1078-0432.CCR-06-1246
  32. Sucheston LE , Zhao H , Yao S , Zirpoli G , Liu S , Barlow WE , et al. Genetic predictors of taxane-induced neurotoxicity in a SWOG phase III intergroup adjuvant breast cancer treatment trial (S0221). Breast Cancer Res Treat. 2011 Dec;130(3):993–1002. https://doi.org/10.1007/s10549-011-1671-3 DOI: https://doi.org/10.1007/s10549-011-1671-3
  33. Badora-Rybicka A , Budryk M , Nowara E , Starzyczny-Słota D . Treatment related toxicity in BRCA1-associated epithelial ovarian cancer - is DNA repairing impairment associated with more adverse events? Contemp Oncol (Pozn). 2016;20(5):381–4. https://doi.org/10.5114/wo.2016.64597 DOI: https://doi.org/10.5114/wo.2016.64597
  34. Egloff H , Jatoi A . Do ovarian cancer patients with a family history of cancer (suspected BRCA1 or BRCA2 mutation) suffer greater chemotherapy toxicity? Cancer Invest. 2016 Nov;34(10):531–5. https://doi.org/10.1080/07357907.2016.1242011 DOI: https://doi.org/10.1080/07357907.2016.1242011
  35. Friedlaender A , Vuilleumier A , Viassolo V , Ayme A , De Talhouet S , Combes JD , et al. BRCA1/BRCA2 germline mutations and chemotherapy-related hematological toxicity in breast cancer patients. Breast Cancer Res Treat. 2019 Apr;174(3):775–83. https://doi.org/10.1007/s10549-018-05127-2 DOI: https://doi.org/10.1007/s10549-018-05127-2
  36. Furlanetto J , Möbus V , Schneeweiss A , Rhiem K , Tesch H , Blohmer JU , et al. Germline BRCA1/2 mutations and severe haematological toxicities in patients with breast cancer treated with neoadjuvant chemotherapy. Eur J Cancer. 2021 Mar;145:44–52. https://doi.org/10.1016/j.ejca.2020.12.007 DOI: https://doi.org/10.1016/j.ejca.2020.12.007
  37. Chappuis PO , Bollinger B , Bürki N , et al. Swiss guidelines for counselling and testing: genetic predisposition to breast and ovarian cancer. Schweiz Arzteztg. 2017;98(2122):682–4. https://doi.org/10.4414/saez.2017.05502 DOI: https://doi.org/10.4414/saez.2017.05502
  38. NCI Common Terminology Criteria for Adverse Events V5 . 0. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf (Accessed on August 2021).
  39. BOADICEA Research Tool Software version 3.0, available via the World Wide Web https://pluto.srl.cam.ac.uk/cgi-bin/bd3/v3/bd.cgi (Accessed on February 2021).
  40. Spurdle AB , Healey S , Devereau A , Hogervorst FB , Monteiro AN , Nathanson KL , et al.; ENIGMA . ENIGMA—evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat. 2012 Jan;33(1):2–7. https://doi.org/10.1002/humu.21628 DOI: https://doi.org/10.1002/humu.21628
  41. ENIGMA (Evidence‐based Network for the Interpretation of Germline Mutant Alleles) . http://www.enigmaconsortium.org (Accessed on February 2021)
  42. Manickam K , Buchanan AH , Schwartz MLB , et al. Exome Sequencing-Based Screening for BRCA1/2 Expected Pathogenic Variants Among Adult Biobank Participants. JAMA Netw Open. 2018;1(5):e182140. Published 2018 Sep 7. DOI: https://doi.org/10.1001/jamanetworkopen.2018.2140
  43. Collaborative Group on Hormonal Factors in Breast Cancer . Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 2001 Oct;358(9291):1389–99. https://doi.org/10.1016/S0140-6736(01)06524-2 DOI: https://doi.org/10.1016/S0140-6736(01)06524-2
  44. Narod SA , Brunet JS , Ghadirian P , Robson M , Heimdal K , Neuhausen SL , et al.; Hereditary Breast Cancer Clinical Study Group . Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Lancet. 2000 Dec;356(9245):1876–81. https://doi.org/10.1016/S0140-6736(00)03258-X DOI: https://doi.org/10.1016/S0140-6736(00)03258-X
  45. Phillips KA , Milne RL , Rookus MA , Daly MB , Antoniou AC , Peock S , et al. Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2013 Sep;31(25):3091–9. https://doi.org/10.1200/JCO.2012.47.8313 DOI: https://doi.org/10.1186/1897-4287-10-S2-A11
  46. Gronwald J , Robidoux A , Kim-Sing C , Tung N , Lynch HT , Foulkes WD , et al.; Hereditary Breast Cancer Clinical Study Group . Duration of tamoxifen use and the risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat. 2014 Jul;146(2):421–7. https://doi.org/10.1007/s10549-014-3026-3 DOI: https://doi.org/10.1007/s10549-014-3026-3
  47. Friebel TM , Domchek SM , Rebbeck TR . Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J Natl Cancer Inst. 2014 Jun;106(6):dju091. https://doi.org/10.1093/jnci/dju091 DOI: https://doi.org/10.1093/jnci/dju091
  48. Domchek SM , Friebel TM , Singer CF , Evans DG , Lynch HT , Isaacs C , et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010 Sep;304(9):967–75. https://doi.org/10.1001/jama.2010.1237 DOI: https://doi.org/10.1001/jama.2010.1237
  49. Heemskerk-Gerritsen BA , Menke-Pluijmers MB , Jager A , Tilanus-Linthorst MM , Koppert LB , Obdeijn IM , et al. Substantial breast cancer risk reduction and potential survival benefit after bilateral mastectomy when compared with surveillance in healthy BRCA1 and BRCA2 mutation carriers: a prospective analysis. Ann Oncol. 2013 Aug;24(8):2029–35. https://doi.org/10.1093/annonc/mdt134 DOI: https://doi.org/10.1093/annonc/mdt134
  50. Metcalfe K , Gershman S , Ghadirian P , et al. Contralateral mastectomy and survival after breast cancer in carriers of BRCA1 and BRCA2 mutations: retrospective analysis. BMJ. 2014;348:g226. Published 2014 Feb 11. https://doi.org/10.1136/bmj.g226 DOI: https://doi.org/10.1136/bmj.g226
  51. Greene MH , Piedmonte M , Alberts D , Gail M , Hensley M , Miner Z , et al. A prospective study of risk-reducing salpingo-oophorectomy and longitudinal CA-125 screening among women at increased genetic risk of ovarian cancer: design and baseline characteristics: a Gynecologic Oncology Group study. Cancer Epidemiol Biomarkers Prev. 2008 Mar;17(3):594–604. https://doi.org/10.1158/1055-9965.EPI-07-2703 DOI: https://doi.org/10.1158/1055-9965.EPI-07-2703
  52. Finch AP , Lubinski J , Møller P , Singer CF , Karlan B , Senter L , et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol. 2014 May;32(15):1547–53. https://doi.org/10.1200/JCO.2013.53.2820 DOI: https://doi.org/10.1200/JCO.2013.53.2820
  53. Marchetti C , De Felice F , Palaia I , Perniola G , Musella A , Musio D , et al. Risk-reducing salpingo-oophorectomy: a meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA 1 and BRCA 2 mutation carriers. BMC Womens Health. 2014 Dec;14(1):150. https://doi.org/10.1186/s12905-014-0150-5 DOI: https://doi.org/10.1186/s12905-014-0150-5
  54. Byrski T , Huzarski T , Dent R , Gronwald J , Zuziak D , Cybulski C , et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat. 2009 May;115(2):359–63. https://doi.org/10.1007/s10549-008-0128-9 DOI: https://doi.org/10.1007/s10549-008-0128-9
  55. Fong PC , Boss DS , Yap TA , Tutt A , Wu P , Mergui-Roelvink M , et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009 Jul;361(2):123–34. https://doi.org/10.1056/NEJMoa0900212 DOI: https://doi.org/10.1056/NEJMoa0900212
  56. Tutt A , Robson M , Garber JE , Domchek SM , Audeh MW , Weitzel JN , et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010 Jul;376(9737):235–44. https://doi.org/10.1016/S0140-6736(10)60892-6 DOI: https://doi.org/10.1016/S0140-6736(10)60892-6
  57. Sandhu SK , Schelman WR , Wilding G , Moreno V , Baird RD , Miranda S , et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013 Aug;14(9):882–92. https://doi.org/10.1016/S1470-2045(13)70240-7 DOI: https://doi.org/10.1016/S1470-2045(13)70240-7
  58. Rodler ET , Kurland BF , Griffin M , Gralow JR , Porter P , Yeh RF , et al. Phase I Study of Veliparib (ABT-888) Combined with Cisplatin and Vinorelbine in Advanced Triple-Negative Breast Cancer and/or BRCA Mutation-Associated Breast Cancer. Clin Cancer Res. 2016 Jun;22(12):2855–64. https://doi.org/10.1158/1078-0432.CCR-15-2137 DOI: https://doi.org/10.1158/1078-0432.CCR-15-2137
  59. Audeh MW , Carmichael J , Penson RT , Friedlander M , Powell B , Bell-McGuinn KM , et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010 Jul;376(9737):245–51. https://doi.org/10.1016/S0140-6736(10)60893-8 DOI: https://doi.org/10.1016/S0140-6736(10)60893-8
  60. Litton JK , Scoggins M , Ramirez DL , et al. A feasibility study of neoadjuvant talazoparib for operable breast cancer patients with a germline BRCA mutation demonstrates marked activity. NPJ Breast Cancer. 2017;3:49. Published 2017 Dec 6. https://doi.org/10.1038/s41523-017-0052-4 DOI: https://doi.org/10.1038/s41523-017-0052-4
  61. Tuffaha HW , Mitchell A , Ward RL , Connelly L , Butler JR , Norris S , et al. Cost-effectiveness analysis of germ-line BRCA testing in women with breast cancer and cascade testing in family members of mutation carriers. Genet Med. 2018 Sep;20(9):985–94. https://doi.org/10.1038/gim.2017.231 DOI: https://doi.org/10.1038/gim.2017.231
  62. Slade I , Hanson H , George A , Kohut K , Strydom A , Wordsworth S , et al.; MCG programme . A cost analysis of a cancer genetic service model in the UK. J Community Genet. 2016 Jul;7(3):185–94. https://doi.org/10.1007/s12687-016-0266-4 DOI: https://doi.org/10.1007/s12687-016-0266-4
  63. Sun L , Brentnall A , Patel S , Buist DS , Bowles EJ , Evans DG , et al. A Cost-effectiveness Analysis of Multigene Testing for All Patients With Breast Cancer [published online ahead of print, 2019 Oct 3]. JAMA Oncol. 2019 Oct;5(12):1718–30. https://doi.org/10.1001/jamaoncol.2019.3323 DOI: https://doi.org/10.1001/jamaoncol.2019.3323
  64. Eccleston A , Bentley A , Dyer M , Strydom A , Vereecken W , George A , et al. A Cost-Effectiveness Evaluation of Germline BRCA1 and BRCA2 Testing in UK Women with Ovarian Cancer. Value Health. 2017 Apr;20(4):567–76. https://doi.org/10.1016/j.jval.2017.01.004 DOI: https://doi.org/10.1016/j.jval.2017.01.004
  65. Asphaug L , Melberg HO . The Cost-Effectiveness of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer in Norway. MDM Policy Pract. 2019 Feb;4(1):2381468318821103. https://doi.org/10.1177/2381468318821103 DOI: https://doi.org/10.1177/2381468318821103
  66. Dhawan MS , Bartelink IH , Aggarwal RR , Leng J , Zhang JZ , Pawlowska N , et al. Differential Toxicity in Patients with and without DNA Repair Mutations: Phase I Study of Carboplatin and Talazoparib in Advanced Solid Tumors [published correction appears in Clin Cancer Res. 2018 Feb 15;24(4):985]. Clin Cancer Res. 2017 Nov;23(21):6400–10. https://doi.org/10.1158/1078-0432.CCR-17-0703 DOI: https://doi.org/10.1158/1078-0432.CCR-17-0703
  67. Mgbemena VE , Signer RA , Wijayatunge R , Laxson T , Morrison SJ , Ross TS . Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function. Cell Rep. 2017 Jan;18(4):947–60. https://doi.org/10.1016/j.celrep.2016.12.075 DOI: https://doi.org/10.1016/j.celrep.2016.12.075
  68. Lakhani SR , Van De Vijver MJ , Jacquemier J , Anderson TJ , Osin PP , McGuffog L , et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol. 2002 May;20(9):2310–8. https://doi.org/10.1200/JCO.2002.09.023 DOI: https://doi.org/10.1200/JCO.2002.09.023
  69. Atchley DP , Albarracin CT , Lopez A , Valero V , Amos CI , Gonzalez-Angulo AM , et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008 Sep;26(26):4282–8. https://doi.org/10.1200/JCO.2008.16.6231 DOI: https://doi.org/10.1200/JCO.2008.16.6231
  70. Mavaddat N , Barrowdale D , Andrulis IL , Domchek SM , Eccles D , Nevanlinna H , et al.; HEBON; EMBRACE; GEMO Study Collaborators; kConFab Investigators; SWE-BRCA Collaborators; Consortium of Investigators of Modifiers of BRCA1/2 . Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev. 2012 Jan;21(1):134–47. https://doi.org/10.1158/1055-9965.EPI-11-0775 DOI: https://doi.org/10.1158/1055-9965.EPI-11-0775
  71. Goodwin PJ , Phillips KA , West DW , Ennis M , Hopper JL , John EM , et al. Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol. 2012 Jan;30(1):19–26. https://doi.org/10.1200/JCO.2010.33.0068 DOI: https://doi.org/10.1200/JCO.2010.33.0068
  72. Vig HS , McCarthy AM , Liao K , Demeter MB , Fredericks T , Armstrong K . Age at diagnosis may trump family history in driving BRCA testing in a population of breast cancer patients. Cancer Epidemiol Biomarkers Prev. 2013 Oct;22(10):1778–85. https://doi.org/10.1158/1055-9965.EPI-13-0426 DOI: https://doi.org/10.1158/1055-9965.EPI-13-0426

Most read articles by the same author(s)