Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 153 No. 2 (2023)

Applicability of T cell receptor repertoire sequencing analysis to unbalanced clinical samples – comparing the T cell receptor repertoire of GATA2 deficient patients and healthy controls

  • Valentin von Niederhäusern
  • Marie Ghraichy
  • Johannes Trück
DOI
https://doi.org/10.57187/smw.2023.40046
Cite this as:
Swiss Med Wkly. 2023;153:40046
Published
08.02.2023

Summary

T cell receptor repertoire sequencing (TCRseq) has become one of the major omic tools to study the immune system in health and disease. Multiple commercial solutions are currently available, greatly facilitating the implementation of this complex method into translational studies. However, the flexibility of these methods to react to suboptimal sample material is still limited. In a clinical research context, limited sample availability and/or unbalanced sample material can negatively impact the feasibility and quality of such analyses. We sequenced the T cell receptor repertoires of three healthy controls and four patients with GATA2 deficiency using a commercially available TCRseq kit and thereby (1) assessed the impact of suboptimal sample quality and (2) implemented a subsampling strategy to react to biased sample input quantity. Applying these strategies, we did not find significant differences in the global T cell receptor repertoire characteristics such as V and J gene usage, CDR3 junction length and repertoire diversity of GATA2-deficient patients compared with healthy control samples. Our results prove the adaptability of this TCRseq protocol to the analysis of unbalanced sample material and provide encouraging evidence for use of this method in future studies despite suboptimal patient samples.

References

  1. Rosati E, Dowds CM, Liaskou E, Henriksen EK, Karlsen TH, Franke A. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 2017 Jul;17(1):61. https://doi.org/10.1186/s12896-017-0379-9 DOI: https://doi.org/10.1186/s12896-017-0379-9
  2. Laydon DJ, Bangham CRM, Asquith B. Estimating T-cell repertoire diversity: Limitations of classical estimators and a new approach. Philos Trans R Soc B Biol Sci. 2015;370(1675). doi:https://doi.org/10.1098/rstb.2014.0291 DOI: https://doi.org/10.1098/rstb.2014.0291
  3. Howson LJ, Napolitani G, Shepherd D, Ghadbane H, Kurupati P, Preciado-Llanes L, et al. MAIT cell clonal expansion and TCR repertoire shaping in human volunteers challenged with Salmonella Paratyphi A. Nat Commun. 2018 Jan;9(1):253. https://doi.org/10.1038/s41467-017-02540-x DOI: https://doi.org/10.1038/s41467-017-02540-x
  4. Amoriello R, Mariottini A, Ballerini C. Immunosenescence and Autoimmunity: Exploiting the T-Cell Receptor Repertoire to Investigate the Impact of Aging on Multiple Sclerosis. Front Immunol. 2021 Dec;12:799380. https://doi.org/10.3389/fimmu.2021.799380 DOI: https://doi.org/10.3389/fimmu.2021.799380
  5. Schrama D, Ritter C, Becker JC. T cell receptor repertoire usage in cancer as a surrogate marker for immune responses. Semin Immunopathol. 2017 Apr;39(3):255–68. https://doi.org/10.1007/s00281-016-0614-9 DOI: https://doi.org/10.1007/s00281-016-0614-9
  6. Pogorelyy MV, Minervina AA, Touzel MP, Sycheva AL, Komech EA, Kovalenko EI, et al. Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins. Proc Natl Acad Sci USA. 2018 Dec;115(50):12704–9. https://doi.org/10.1073/pnas.1809642115 DOI: https://doi.org/10.1073/pnas.1809642115
  7. Hogan SA, Courtier A, Cheng PF, Jaberg-Bentele NF, Goldinger SM, Manuel M, et al. Peripheral blood TCR repertoire profiling may facilitate patient stratification for immunotherapy against melanoma. Cancer Immunol Res. 2019 Jan;7(1):77–85. https://doi.org/10.1158/2326-6066.CIR-18-0136 DOI: https://doi.org/10.1158/2326-6066.CIR-18-0136
  8. Barennes P, Quiniou V, Shugay M, Egorov ES, Davydov AN, Chudakov DM, et al. Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases. Nat Biotechnol. 2021 Feb;39(2):236–45. https://doi.org/10.1038/s41587-020-0656-3 DOI: https://doi.org/10.1038/s41587-020-0656-3
  9. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014 Feb;123(6):809–21. https://doi.org/10.1182/blood-2013-07-515528 DOI: https://doi.org/10.1182/blood-2013-07-515528
  10. Collin M, Dickinson R, Bigley V. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol. 2015 Apr;169(2):173–87. https://doi.org/10.1111/bjh.13317 DOI: https://doi.org/10.1111/bjh.13317
  11. Dickinson RE, Milne P, Jardine L, Zandi S, Swierczek SI, McGovern N, et al. The evolution of cellular deficiency in GATA2 mutation. Blood. 2014 Feb;123(6):863–74. https://doi.org/10.1182/blood-2013-07-517151 DOI: https://doi.org/10.1182/blood-2013-07-517151
  12. Ganapathi KA, Townsley DM, Hsu AP, Arthur DC, Zerbe CS, Cuellar-Rodriguez J, et al. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. Blood. 2015 Jan;125(1):56–70. https://doi.org/10.1182/blood-2014-06-580340 DOI: https://doi.org/10.1182/blood-2014-06-580340
  13. Oksanen J, Blanchet FG, Friendly M, et al. vegan: Community Ecology Package. Published online 2020. https://cran.r-project.org/package=vegan
  14. Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Published online 2020. http://www.sthda.com/english/rpkgs/factoextra
  15. R Core Team. R: A Language and Environment for Statistical Computing. Published online 2020. https://www.r-project.org/
  16. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Published online 2016. https://ggplot2.tidyverse.org DOI: https://doi.org/10.1007/978-3-319-24277-4
  17. Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for ggplot2. https://wilkelab.org/cowplot/
  18. Fang M, Su Z, Abolhassani H, Zhang W, Jiang C, Cheng B, et al. T Cell Repertoire Abnormality in Immunodeficiency Patients with DNA Repair and Methylation Defects. J Clin Immunol. 2022 Feb;42(2):375–93. https://doi.org/10.1007/s10875-021-01178-1 DOI: https://doi.org/10.1007/s10875-021-01178-1
  19. Emerson R, Sherwood A, Desmarais C, Malhotra S, Phippard D, Robins H. Estimating the ratio of CD4+ to CD8+ T cells using high-throughput sequence data. J Immunol Methods. 2013 May;391(1-2):14–21. https://doi.org/10.1016/j.jim.2013.02.002 DOI: https://doi.org/10.1016/j.jim.2013.02.002
  20. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005 Jun;174(11):7446–52. https://doi.org/10.4049/jimmunol.174.11.7446 DOI: https://doi.org/10.4049/jimmunol.174.11.7446

Most read articles by the same author(s)