Skip to main navigation menu Skip to main content Skip to site footer

Review article: Medical guidelines

Vol. 153 No. 1 (2023)

Diabetic kidney disease in type 2 diabetes: a consensus statement from the Swiss Societies of Diabetes and Nephrology

  • Anne Zanchi
  • Andreas W. Jehle
  • Faiza Lamine
  • Bruno Vogt
  • Cecilia Czerlau
  • Stefan Bilz
  • Harald Seeger
  • Sophie de Seigneux
DOI
https://doi.org/10.57187/smw.2023.40004
Cite this as:
Swiss Med Wkly. 2023;153:40004
Published
06.01.2023

Summary

Diabetic kidney disease is highly prevalent in patients with type 2 diabetes and is a major cause of end-stage renal disease in Switzerland. Patients with diabetic kidney disease are among the most complex patients in diabetes care. They require a multifactorial and multidisciplinary approach with the goal to slow the decline in glomerular filtration rate (GFR) and cardiovascular morbidity. With this consensus we propose an evidence-based guidance to health care providers involved in the care of type 2 diabetic patients with diabetic kidney disease.

First, there is a need to increase physician awareness and improve screening for diabetic kidney disease as early intervention may improve clinical outcomes and the financial burden. Evaluation of estimated GFR (eGFR) and spot urine albumin/creatinine ratio is recommended at least annually.

Once it is diagnosed, glucose control and optimisation of blood pressure control with renin-angiotensin system blockers have been recommended as mainstay management of diabetic kidney disease for more than 20 years. Recent, high quality randomised controlled trials have shown that sodium-glucose cotransporter-2 (SGLT2) inhibition slows eGFR decline and cardiovascular events beyond glucose control. Likewise, mineralocorticoid receptor antagonism with finerenone has cardiorenal protective effects in diabetic kidney disease. Glucagon-like peptide-1 (GLP1) receptor agonists improve weight loss if needed, and decrease albuminuria and cardiovascular morbidity. Lipid control is also important to decrease cardiovascular events. All these therapies are included in the treatment algorithms proposed in this consensus.

With advancing kidney failure, other challenges may rise, such as hyperkalaemia, anaemia and metabolic acidosis, as well as chronic kidney disease-mineral and bone disorder. These different topics and treatment strategies are discussed in this consensus. Finally, an update on diabetes management in renal replacement therapy such as haemodialysis, peritoneal dialysis and renal transplantation is provided.

With the recent developments of efficient therapies for diabetic kidney disease, it has become evident that a consensus document is necessary. We are optimistic that it will significantly contribute to a high-quality care for patients with diabetic kidney disease in Switzerland in the future.

References

  1. de Boer IH, Caramori ML, Chan JC, Heerspink HJ, Hurst C, Khunti K, et al. Kidney Disease: Improving Global Outcomes Diabetes Work G. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020;98(4):S1–115. https://doi.org/10.1016/j.kint.2020.06.019 DOI: https://doi.org/10.1016/j.kint.2020.06.019
  2. American Diabetes Association. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020 Jan;43 Suppl 1:S135–51. https://doi.org/10.2337/dc20-S011 DOI: https://doi.org/10.2337/dc20-S011
  3. Lamine F, Lalubin F, Pitteloud N, Burnier M, Zanchi A. Chronic kidney disease in type 2 diabetic patients followed-up by primary care physicians in Switzerland: prevalence and prescription of antidiabetic drugs. Swiss Med Wkly. 2016 Feb;146:w14282. https://doi.org/10.4414/smw.2016.14282 DOI: https://doi.org/10.4414/smw.2016.14282
  4. Delanaye P, Jager KJ, Bökenkamp A, Christensson A, Dubourg L, Eriksen BO, et al. CKD: A Call for an Age-Adapted Definition. J Am Soc Nephrol. 2019 Oct;30(10):1785–805. https://doi.org/10.1681/ASN.2019030238 DOI: https://doi.org/10.1681/ASN.2019030238
  5. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al.; CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012 Jul;367(1):20–9. https://doi.org/10.1056/NEJMoa1114248 DOI: https://doi.org/10.1056/NEJMoa1114248
  6. Schrauben SJ, Shou H, Zhang X, Anderson AH, Bonventre JV, Chen J, et al.; CKD Biomarkers Consortium and the Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Association of Multiple Plasma Biomarker Concentrations with Progression of Prevalent Diabetic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. J Am Soc Nephrol. 2021 Jan;32(1):115–26. https://doi.org/10.1681/ASN.2020040487 DOI: https://doi.org/10.1681/ASN.2020040487
  7. Nowak N, Skupien J, Smiles AM, Yamanouchi M, Niewczas MA, Galecki AT, et al. Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney Int. 2018 May;93(5):1198–206. https://doi.org/10.1016/j.kint.2017.11.024 DOI: https://doi.org/10.1016/j.kint.2017.11.024
  8. Zoungas S, Woodward M, Li Q, Cooper ME, Hamet P, Harrap S, et al.; ADVANCE Collaborative group. Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia. 2014 Dec;57(12):2465–74. https://doi.org/10.1007/s00125-014-3369-7 DOI: https://doi.org/10.1007/s00125-014-3369-7
  9. Gutiérrez OM, Sang Y, Grams ME, Ballew SH, Surapaneni A, Matsushita K, et al.; Chronic Kidney Disease Prognosis Consortium. Association of Estimated GFR Calculated Using Race-Free Equations With Kidney Failure and Mortality by Black vs Non-Black Race. JAMA. 2022 Jun;327(23):2306–16. https://doi.org/10.1001/jama.2022.8801 DOI: https://doi.org/10.1001/jama.2022.8801
  10. Guessous I, Ponte B, Marques-Vidal P, Paccaud F, Gaspoz JM, Burnier M, et al. Clinical and biological determinants of kidney outcomes in a population-based cohort study. Kidney Blood Press Res. 2014;39(1):74–85. https://doi.org/10.1159/000355779 DOI: https://doi.org/10.1159/000355779
  11. Dubrofsky L, Srivastava A, Cherney DZ. Sodium-Glucose Cotransporter-2 Inhibitors in Nephrology Practice: A Narrative Review. Can J Kidney Health Dis. 2020 Jun;7:2054358120935701. https://doi.org/10.1177/2054358120935701 DOI: https://doi.org/10.1177/2054358120935701
  12. Diabetes C. Complications Trial Research G, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L and Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86. https://doi.org/10.1056/NEJM199309303291401 DOI: https://doi.org/10.1056/NEJM199309303291401
  13. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998 Sep;352(9131):837–53. https://doi.org/10.1016/S0140-6736(98)07019-6 DOI: https://doi.org/10.1016/S0140-6736(98)07019-6
  14. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al.; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008 Jun;358(24):2545–59. https://doi.org/10.1056/NEJMoa0802743 DOI: https://doi.org/10.1056/NEJMoa0802743
  15. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al.; ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008 Jun;358(24):2560–72. https://doi.org/10.1056/NEJMoa0802987 DOI: https://doi.org/10.1056/NEJMoa0802987
  16. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al.; VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009 Jan;360(2):129–39. https://doi.org/10.1056/NEJMoa0808431 DOI: https://doi.org/10.1056/NEJMoa0808431
  17. de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, Steffes MW, et al.; DCCT/EDIC Research Group. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011 Dec;365(25):2366–76. https://doi.org/10.1056/NEJMoa1111732 DOI: https://doi.org/10.1056/NEJMoa1111732
  18. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al.; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015 Nov;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720 DOI: https://doi.org/10.1056/NEJMoa1504720
  19. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al.; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016 Jul;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827 DOI: https://doi.org/10.1056/NEJMoa1603827
  20. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al.; SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016 Nov;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141 DOI: https://doi.org/10.1056/NEJMoa1607141
  21. Zoungas S, Arima H, Gerstein HC, Holman RR, Woodward M, Reaven P, et al.; Collaborators on Trials of Lowering Glucose (CONTROL) group. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017 Jun;5(6):431–7. https://doi.org/10.1016/S2213-8587(17)30104-3 DOI: https://doi.org/10.1016/S2213-8587(17)30104-3
  22. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al.; EMPEROR-Reduced Trial Investigators. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020 Oct;383(15):1413–24. https://doi.org/10.1056/NEJMoa2022190 DOI: https://doi.org/10.1056/NEJMoa2022190
  23. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJ, Charytan DM, et al.; CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019 Jun;380(24):2295–306. https://doi.org/10.1056/NEJMoa1811744 DOI: https://doi.org/10.1056/NEJMoa1811744
  24. Heerspink HJ, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al.; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020 Oct;383(15):1436–46. https://doi.org/10.1056/NEJMoa2024816 DOI: https://doi.org/10.1056/NEJMoa2024816
  25. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019 Jan;393(10166):31–9. https://doi.org/10.1016/S0140-6736(18)32590-X DOI: https://doi.org/10.1016/S0140-6736(18)32590-X
  26. Heerspink HJ, Karasik A, Thuresson M, Melzer-Cohen C, Chodick G, Khunti K, et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol. 2020 Jan;8(1):27–35. https://doi.org/10.1016/S2213-8587(19)30384-5 DOI: https://doi.org/10.1016/S2213-8587(19)30384-5
  27. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al.; EMPEROR-Preserved Trial Investigators. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021 Oct;385(16):1451–61. https://doi.org/10.1056/NEJMoa2107038 DOI: https://doi.org/10.1056/NEJMoa2107038
  28. McMurray JJ, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al.; DAPA-HF Trial Committees and Investigators. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019 Nov;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303 DOI: https://doi.org/10.1002/ejhf.1548
  29. Wiviott SD, Raz I, Sabatine MS. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. Reply [Reply]. N Engl J Med. 2019 May;380(19):1881–2. DOI: https://doi.org/10.1056/NEJMc1902837
  30. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al.; REWIND Investigators. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019 Jul;394(10193):131–8. https://doi.org/10.1016/S0140-6736(19)31150-X DOI: https://doi.org/10.1016/S0140-6736(19)31150-X
  31. Borg R, Persson F, Siersma V, Lind B, de Fine Olivarius N, Andersen CL. Interpretation of HbA1c in primary care and potential influence of anaemia and chronic kidney disease: an analysis from the Copenhagen Primary Care Laboratory (CopLab) Database. Diabet Med. 2018 Dec;35(12):1700–6. https://doi.org/10.1111/dme.13776 DOI: https://doi.org/10.1111/dme.13776
  32. Hassanein M, Shafi T. Assessment of glycemia in chronic kidney disease. BMC Med. 2022 Apr;20(1):117. https://doi.org/10.1186/s12916-022-02316-1 DOI: https://doi.org/10.1186/s12916-022-02316-1
  33. Hansson L, Zanchetti A, Carruthers SG, Dahlöf B, Elmfeldt D, Julius S, et al.; HOT Study Group. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet. 1998 Jun;351(9118):1755–62. https://doi.org/10.1016/S0140-6736(98)04311-6 DOI: https://doi.org/10.1016/S0140-6736(98)04311-6
  34. Patel A, MacMahon S, Chalmers J, Neal B, Woodward M, Billot L, et al.; ADVANCE Collaborative Group. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007 Sep;370(9590):829–40. https://doi.org/10.1016/S0140-6736(07)61303-8 DOI: https://doi.org/10.1016/S0140-6736(07)61303-8
  35. Margolis KL, O’Connor PJ, Morgan TM, Buse JB, Cohen RM, Cushman WC, et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care. 2014 Jun;37(6):1721–8. https://doi.org/10.2337/dc13-2334 DOI: https://doi.org/10.2337/dc13-2334
  36. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al.; Authors/Task Force Members. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018 Oct;36(10):1953–2041. https://doi.org/10.1097/HJH.0000000000001940 DOI: https://doi.org/10.1097/HJH.0000000000001940
  37. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998 Sep;317(7160):703–13. https://doi.org/10.1136/bmj.317.7160.703 DOI: https://doi.org/10.1136/bmj.317.7160.703
  38. American Diabetes Association. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021 Jan;44 Suppl 1:S125–50. https://doi.org/10.2337/dc21-S010 DOI: https://doi.org/10.2337/dc21-S010
  39. Cheung AK, Chang TI, Cushman WC, Furth SL, Hou FF, Ix JH, et al. Executive summary of the KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021 Mar;99(3):559–69. https://doi.org/10.1016/j.kint.2020.10.026 DOI: https://doi.org/10.1016/j.kint.2020.10.026
  40. Agarwal R, Sinha AD, Cramer AE, Balmes-Fenwick M, Dickinson JH, Ouyang F, et al. Chlorthalidone for Hypertension in Advanced Chronic Kidney Disease. N Engl J Med. 2021 Dec;385(27):2507–19. https://doi.org/10.1056/NEJMoa2110730 DOI: https://doi.org/10.1056/NEJMoa2110730
  41. Kawanami D, Takashi Y, Muta Y, Oda N, Nagata D, Takahashi H, et al. Mineralocorticoid Receptor Antagonists in Diabetic Kidney Disease. Front Pharmacol. 2021 Oct;12:754239. https://doi.org/10.3389/fphar.2021.754239 DOI: https://doi.org/10.3389/fphar.2021.754239
  42. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al.; FIDELIO-DKD Investigators. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. 2020 Dec;383(23):2219–29. https://doi.org/10.1056/NEJMoa2025845 DOI: https://doi.org/10.1056/NEJMoa2025845
  43. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al.; FIGARO-DKD Investigators. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med. 2021 Dec;385(24):2252–63. https://doi.org/10.1056/NEJMoa2110956 DOI: https://doi.org/10.1056/NEJMoa2110956
  44. Rossing P, Filippatos G, Agarwal R, Anker SD, Pitt B, Ruilope LM, et al.; FIDELIO-DKD Investigators. Finerenone in Predominantly Advanced CKD and Type 2 Diabetes With or Without Sodium-Glucose Cotransporter-2 Inhibitor Therapy. Kidney Int Rep. 2021 Oct;7(1):36–45. https://doi.org/10.1016/j.ekir.2021.10.008 DOI: https://doi.org/10.1016/j.ekir.2021.10.008
  45. Agarwal R, Joseph A, Anker SD, Filippatos G, Rossing P, Ruilope LM, et al.; FIDELIO-DKD Investigators. Hyperkalemia Risk with Finerenone: results from the FIDELIO-DKD Trial. J Am Soc Nephrol. 2022 Jan;33(1):225–37. https://doi.org/10.1681/ASN.2021070942 DOI: https://doi.org/10.1681/ASN.2021070942
  46. Ferro CJ, Mark PB, Kanbay M, Sarafidis P, Heine GH, Rossignol P, et al. Lipid management in patients with chronic kidney disease. Nat Rev Nephrol. 2018 Dec;14(12):727–49. https://doi.org/10.1038/s41581-018-0072-9 DOI: https://doi.org/10.1038/s41581-018-0072-9
  47. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013 Jul;382(9889):339–52. https://doi.org/10.1016/S0140-6736(13)60595-4 DOI: https://doi.org/10.1016/S0140-6736(13)60595-4
  48. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al.; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020 Jan;41(1):111–88. https://doi.org/10.1093/eurheartj/ehz455 DOI: https://doi.org/10.1093/eurheartj/ehz455
  49. Cholesterol Treatment Trialists C. Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, Armitage J and Baigent C. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25. https://doi.org/10.1016/S0140-6736(08)60104-X DOI: https://doi.org/10.1016/S0140-6736(08)60104-X
  50. Wanner C, Tonelli M; Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. KDIGO Clinical Practice Guideline for Lipid Management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014 Jun;85(6):1303–9. https://doi.org/10.1038/ki.2014.31 DOI: https://doi.org/10.1038/ki.2014.31
  51. Visseren FL, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al.; ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021 Sep;42(34):3227–337. https://doi.org/10.1093/eurheartj/ehab484 DOI: https://doi.org/10.1093/eurheartj/ehab484
  52. Wang N, Fulcher J, Abeysuriya N, Park L, Kumar S, Di Tanna GL, et al. Intensive LDL cholesterol-lowering treatment beyond current recommendations for the prevention of major vascular events: a systematic review and meta-analysis of randomised trials including 327 037 participants. Lancet Diabetes Endocrinol. 2020 Jan;8(1):36–49. https://doi.org/10.1016/S2213-8587(19)30388-2 DOI: https://doi.org/10.1016/S2213-8587(19)30388-2
  53. Herrington WG, Emberson J, Mihaylova B, Blackwell L, Reith C, Solbu MD, et al.; Cholesterol Treatment Trialists’ (CTT) Collaboration. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 2016 Oct;4(10):829–39. https://doi.org/10.1016/S2213-8587(16)30156-5 DOI: https://doi.org/10.1016/S2213-8587(16)30156-5
  54. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al.; SHARP Investigators. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011 Jun;377(9784):2181–92. https://doi.org/10.1016/S0140-6736(11)60739-3 DOI: https://doi.org/10.1016/S0140-6736(11)60739-3
  55. Charytan DM, Sabatine MS, Pedersen TR, Im K, Park JG, Pineda AL, et al.; FOURIER Steering Committee and Investigators. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J Am Coll Cardiol. 2019 Jun;73(23):2961–70. https://doi.org/10.1016/j.jacc.2019.03.513 DOI: https://doi.org/10.1016/j.jacc.2019.03.513
  56. Holdaas H, Fellström B, Jardine AG, Holme I, Nyberg G, Fauchald P, et al.; Assessment of LEscol in Renal Transplantation (ALERT) Study Investigators. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet. 2003 Jun;361(9374):2024–31. https://doi.org/10.1016/S0140-6736(03)13638-0 DOI: https://doi.org/10.1016/S0140-6736(03)13638-0
  57. Palmer SC, Navaneethan SD, Craig JC, Perkovic V, Johnson DW, Nigwekar SU, et al. HMG CoA reductase inhibitors (statins) for kidney transplant recipients. Cochrane Database Syst Rev. 2014 Jan;2014(1):CD005019. https://doi.org/10.1002/14651858.CD005019.pub4 DOI: https://doi.org/10.1002/14651858.CD005019.pub4
  58. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019 Jun;73(24):e285–350. https://doi.org/10.1016/j.jacc.2018.11.003 DOI: https://doi.org/10.1016/j.jacc.2018.11.003
  59. Clase CM, Carrero JJ, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, et al.; Conference Participants. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020 Jan;97(1):42–61. https://doi.org/10.1016/j.kint.2019.09.018 DOI: https://doi.org/10.1016/j.kint.2019.09.018
  60. Natale P, Palmer SC, Ruospo M, Saglimbene VM, Strippoli GF. Potassium binders for chronic hyperkalaemia in people with chronic kidney disease. Cochrane Database Syst Rev. 2020 Jun;6(6):CD013165. DOI: https://doi.org/10.1002/14651858.CD013165.pub2
  61. Bridgeman MB, Shah M, Foote E. Potassium-lowering agents for the treatment of nonemergent hyperkalemia: pharmacology, dosing and comparative efficacy. Nephrol Dial Transplant. 2019 Dec;34 Suppl 3:iii45–50. https://doi.org/10.1093/ndt/gfz223 DOI: https://doi.org/10.1093/ndt/gfz223
  62. Georgianos PI, Agarwal R. Revisiting RAAS blockade in CKD with newer potassium-binding drugs. Kidney Int. 2018 Feb;93(2):325–34. https://doi.org/10.1016/j.kint.2017.08.038 DOI: https://doi.org/10.1016/j.kint.2017.08.038
  63. Palmer BF. Potassium Binders for Hyperkalemia in Chronic Kidney Disease-Diet, Renin-Angiotensin-Aldosterone System Inhibitor Therapy, and Hemodialysis. Mayo Clin Proc. 2020 Feb;95(2):339–54. https://doi.org/10.1016/j.mayocp.2019.05.019 DOI: https://doi.org/10.1016/j.mayocp.2019.05.019
  64. Agarwal R, Rossignol P, Romero A, Garza D, Mayo MR, Warren S, et al. Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2019 Oct;394(10208):1540–50. https://doi.org/10.1016/S0140-6736(19)32135-X DOI: https://doi.org/10.1016/S0140-6736(19)32135-X
  65. Weir MR, Bakris GL, Bushinsky DA, Mayo MR, Garza D, Stasiv Y, et al.; OPAL-HK Investigators. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med. 2015 Jan;372(3):211–21. https://doi.org/10.1056/NEJMoa1410853 DOI: https://doi.org/10.1056/NEJMoa1410853
  66. Drüeke TB, Parfrey PS. Summary of the KDIGO guideline on anemia and comment: reading between the (guide)line(s). Kidney Int. 2012 Nov;82(9):952–60. https://doi.org/10.1038/ki.2012.270 DOI: https://doi.org/10.1038/ki.2012.270
  67. Drüeke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, et al.; CREATE Investigators. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006 Nov;355(20):2071–84. https://doi.org/10.1056/NEJMoa062276 DOI: https://doi.org/10.1056/NEJMoa062276
  68. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, et al.; TREAT Investigators. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009 Nov;361(21):2019–32. https://doi.org/10.1056/NEJMoa0907845 DOI: https://doi.org/10.1056/NEJMoa0907845
  69. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, et al.; CHOIR Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006 Nov;355(20):2085–98. https://doi.org/10.1056/NEJMoa065485 DOI: https://doi.org/10.1056/NEJMoa065485
  70. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. The impact of anemia on cardiomyopathy, morbidity, and and mortality in end-stage renal disease. Am J Kidney Dis. 1996 Jul;28(1):53–61. https://doi.org/10.1016/S0272-6386(96)90130-4 DOI: https://doi.org/10.1016/S0272-6386(96)90130-4
  71. Collins AJ, Ma JZ, Ebben J. Impact of hematocrit on morbidity and mortality. Semin Nephrol. 2000 Jul;20(4):345–9.
  72. Xia H, Ebben J, Ma JZ, Collins AJ. Hematocrit levels and hospitalization risks in hemodialysis patients. J Am Soc Nephrol. 1999 Jun;10(6):1309–16. https://doi.org/10.1681/ASN.V1061309 DOI: https://doi.org/10.1681/ASN.V1061309
  73. Kidney Disease: Improving Global Outcomes CKDMBDUWG. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2011;2017(7):1–59. DOI: https://doi.org/10.1016/j.kisu.2017.04.001
  74. Melamed ML, Chonchol M, Gutiérrez OM, Kalantar-Zadeh K, Kendrick J, Norris K, et al. The Role of Vitamin D in CKD Stages 3 to 4: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Am J Kidney Dis. 2018 Dec;72(6):834–45. https://doi.org/10.1053/j.ajkd.2018.06.031 DOI: https://doi.org/10.1053/j.ajkd.2018.06.031
  75. Ruospo M, Palmer SC, Natale P, Craig JC, Vecchio M, Elder GJ, et al. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst Rev. 2018 Aug;8(8):CD006023. https://doi.org/10.1002/14651858.CD006023.pub3 DOI: https://doi.org/10.1002/14651858.CD006023.pub3
  76. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009 Sep;20(9):2075–84. https://doi.org/10.1681/ASN.2008111205 DOI: https://doi.org/10.1681/ASN.2008111205
  77. Goraya N, Simoni J, Jo CH, Wesson DE. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014 Nov;86(5):1031–8. https://doi.org/10.1038/ki.2014.83 DOI: https://doi.org/10.1038/ki.2014.83
  78. Wesson DE, Buysse JM, Bushinsky DA. Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease. J Am Soc Nephrol. 2020 Mar;31(3):469–82. https://doi.org/10.1681/ASN.2019070677 DOI: https://doi.org/10.1681/ASN.2019070677
  79. Abe M, Kalantar-Zadeh K. Haemodialysis-induced hypoglycaemia and glycaemic disarrays. Nat Rev Nephrol. 2015 May;11(5):302–13. https://doi.org/10.1038/nrneph.2015.38 DOI: https://doi.org/10.1038/nrneph.2015.38
  80. Rhee CM, Leung AM, Kovesdy CP, Lynch KE, Brent GA, Kalantar-Zadeh K. Updates on the management of diabetes in dialysis patients. Semin Dial. 2014 Mar;27(2):135–45. https://doi.org/10.1111/sdi.12198 DOI: https://doi.org/10.1111/sdi.12198
  81. Ricks J, Molnar MZ, Kovesdy CP, Shah A, Nissenson AR, Williams M, et al. Glycemic control and cardiovascular mortality in hemodialysis patients with diabetes: a 6-year cohort study. Diabetes. 2012 Mar;61(3):708–15. https://doi.org/10.2337/db11-1015 DOI: https://doi.org/10.2337/db11-1015
  82. Bally L, Gubler P, Thabit H, Hartnell S, Ruan Y, Wilinska ME, et al. Fully closed-loop insulin delivery improves glucose control of inpatients with type 2 diabetes receiving hemodialysis. Kidney Int. 2019 Sep;96(3):593–6. https://doi.org/10.1016/j.kint.2019.03.006 DOI: https://doi.org/10.1016/j.kint.2019.03.006
  83. Lu Y, Stamm C, Nobre D, Pruijm M, Teta D, Cherpillod A, et al. Changing trends in end-stage renal disease patients with diabetes. Swiss Med Wkly. 2017 Jul;147:w14458. DOI: https://doi.org/10.4414/smw.2017.14458
  84. Navaneethan SD, Schold JD, Jolly SE, Arrigain S, Winkelmayer WC, Nally JV Jr. Diabetes Control and the Risks of ESRD and Mortality in Patients With CKD. Am J Kidney Dis. 2017 Aug;70(2):191–8. https://doi.org/10.1053/j.ajkd.2016.11.018 DOI: https://doi.org/10.1053/j.ajkd.2016.11.018
  85. Li PK, Chow KM, Van de Luijtgaarden MW, Johnson DW, Jager KJ, Mehrotra R, et al. Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol. 2017 Feb;13(2):90–103. https://doi.org/10.1038/nrneph.2016.181 DOI: https://doi.org/10.1038/nrneph.2016.181
  86. Uiterwijk H, Franssen CF, Kuipers J, Westerhuis R, Nauta FL. Glucose Exposure in Peritoneal Dialysis Is a Significant Factor Predicting Peritonitis. Am J Nephrol. 2020;51(3):237–43. https://doi.org/10.1159/000506324 DOI: https://doi.org/10.1159/000506324
  87. Meng LF, Yang LM, Zhu XY, Zhang XX, Li XY, Zhao J, et al. Comparison of clinical features and outcomes in peritoneal dialysis-associated peritonitis patients with and without diabetes: A multicenter retrospective cohort study. World J Diabetes. 2020 Oct;11(10):435–46. https://doi.org/10.4239/wjd.v11.i10.435 DOI: https://doi.org/10.4239/wjd.v11.i10.435
  88. Szeto CC, Chow KM, Leung CB, Kwan BC, Chung KY, Law MC, et al. Increased subcutaneous insulin requirements in diabetic patients recently commenced on peritoneal dialysis. Nephrol Dial Transplant. 2007 Jun;22(6):1697–702. https://doi.org/10.1093/ndt/gfl834 DOI: https://doi.org/10.1093/ndt/gfl834
  89. Khan SF, Ronco C, Rosner MH. Counteracting the Metabolic Effects of Glucose Load in Peritoneal Dialysis Patients; an Exercise-Based Approach. Blood Purif. 2019;48(1):25–31. https://doi.org/10.1159/000499406 DOI: https://doi.org/10.1159/000499406
  90. Duong U, Mehrotra R, Molnar MZ, Noori N, Kovesdy CP, Nissenson AR, et al. Glycemic control and survival in peritoneal dialysis patients with diabetes mellitus. Clin J Am Soc Nephrol. 2011 May;6(5):1041–8. https://doi.org/10.2215/CJN.08921010 DOI: https://doi.org/10.2215/CJN.08921010
  91. Li PK, Culleton BF, Ariza A, Do JY, Johnson DW, Sanabria M, et al.; IMPENDIA and EDEN Study Groups. Randomized, controlled trial of glucose-sparing peritoneal dialysis in diabetic patients. J Am Soc Nephrol. 2013 Nov;24(11):1889–900. https://doi.org/10.1681/ASN.2012100987 DOI: https://doi.org/10.1681/ASN.2012100987
  92. Okada E, Oishi D, Sakurada T, Yasuda T, Shibagaki Y. A Comparison Study of Glucose Fluctuation During Automated Peritoneal Dialysis and Continuous Ambulatory Peritoneal Dialysis. Adv Perit Dial. 2015;31:34–7.
  93. Yarragudi R, Gessl A, Vychytil A. New-Onset Diabetes Mellitus in Peritoneal Dialysis and Hemodialysis Patients: Frequency, Risk Factors, and Prognosis-A Review. Ther Apher Dial. 2019 Dec;23(6):497–506. https://doi.org/10.1111/1744-9987.12800 DOI: https://doi.org/10.1111/1744-9987.12800
  94. Qayyum A, Chowdhury TA, Oei EL, Fan SL. Use of Continuous Glucose Monitoring in Patients with Diabetes Mellitus on Peritoneal Dialysis: Correlation with Glycated Hemoglobin and Detection of High Incidence of Unaware Hypoglycemia. Blood Purif. 2016;41(1-3):18–24. https://doi.org/10.1159/000439242 DOI: https://doi.org/10.1159/000439242
  95. Oei E, Samad N, Visser A, Chowdhury TA, Fan SL. Use of continuous glucose monitoring in patients with diabetes on peritoneal dialysis: poor correlation with HbA1c and high incidence of hypoglycaemia. Diabet Med. 2016 Sep;33(9):e17–20. https://doi.org/10.1111/dme.12988 DOI: https://doi.org/10.1111/dme.12988
  96. Xue C, Gu YY, Cui CJ, Zhou CC, Wang XD, Ruan MN, et al. New-onset glucose disorders in peritoneal dialysis patients: a meta-analysis and systematic review. Nephrol Dial Transplant. 2020 Aug;35(8):1412–9. https://doi.org/10.1093/ndt/gfz116 DOI: https://doi.org/10.1093/ndt/gfz116
  97. Sharif A, Hecking M, de Vries AP, Porrini E, Hornum M, Rasoul-Rockenschaub S, et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant. 2014;14:1992-2000. DOI: https://doi.org/10.1111/ajt.12850
  98. Jenssen T, Hartmann A. Emerging treatments for post-transplantation diabetes mellitus. Nat Rev Nephrol. 2015 Aug;11(8):465–77. https://doi.org/10.1038/nrneph.2015.59 DOI: https://doi.org/10.1038/nrneph.2015.59
  99. Anderson S, Cotiguala L, Tischer S, Park JM, McMurry K. Review of Newer Antidiabetic Agents for Diabetes Management in Kidney Transplant Recipients. Ann Pharmacother. 2020;•••:1060028020951955. DOI: https://doi.org/10.1177/1060028020951955
  100. Culliford A, Phagura N, Sharif A. Autosomal Dominant Polycystic Kidney Disease Is a Risk Factor for Posttransplantation Diabetes Mellitus: An Updated Systematic Review and Meta-analysis. Transplant Direct. 2020 Apr;6(5):e553. https://doi.org/10.1097/TXD.0000000000000989 DOI: https://doi.org/10.1097/TXD.0000000000000989
  101. Conte C, Maggiore U, Cappelli G, Ietto G, Lai Q, Salis P, et al. Supporting physicians in the management of metabolic alterations in adult kidney transplant recipients: a comment on the joint position statement of the Italian Society of Nephrology (SIN), the Italian Society for Organ Transplantation (SITO) and the Italian Diabetes Society (SID). J Nephrol. 2020 Oct;33(5):887–93. https://doi.org/10.1007/s40620-020-00839-5 DOI: https://doi.org/10.1007/s40620-020-00839-5
  102. Valderhaug TG, Jenssen T, Hartmann A, Midtvedt K, Holdaas H, Reisaeter AV, et al. Fasting plasma glucose and glycosylated hemoglobin in the screening for diabetes mellitus after renal transplantation. Transplantation. 2009 Aug;88(3):429–34. https://doi.org/10.1097/TP.0b013e3181af1f53 DOI: https://doi.org/10.1097/TP.0b013e3181af1f53
  103. Hecking M, Haidinger M, Döller D, Werzowa J, Tura A, Zhang J, et al. Early basal insulin therapy decreases new-onset diabetes after renal transplantation. J Am Soc Nephrol. 2012 Apr;23(4):739–49. https://doi.org/10.1681/ASN.2011080835 DOI: https://doi.org/10.1681/ASN.2011080835
  104. Eide IA, Halden TA, Hartmann A, Åsberg A, Dahle DO, Reisaeter AV, et al. Mortality risk in post-transplantation diabetes mellitus based on glucose and HbA1c diagnostic criteria. Transpl Int. 2016 May;29(5):568–78. https://doi.org/10.1111/tri.12757 DOI: https://doi.org/10.1111/tri.12757
  105. Hecking M, Sharif A, Eller K, Jenssen T. Management of post-transplant diabetes: immunosuppression, early prevention, and novel antidiabetics. Transpl Int. 2021 Jan;34(1):27–48. https://doi.org/10.1111/tri.13783 DOI: https://doi.org/10.1111/tri.13783
  106. Kanbay M, Demiray A, Afsar B, Karakus KE, Ortiz A, Hornum M, Covic A, Sarafidis P and Rossing P. Sodium-glucose cotransporter 2 inhibitors for diabetes mellitus control after kidney transplantation: Review of the current evidence. Nephrology (Carlton). 2021. DOI: https://doi.org/10.1111/nep.13941
  107. Ko GJ, Kalantar-Zadeh K, Goldstein-Fuchs J, Rhee CM. Dietary Approaches in the Management of Diabetic Patients with Kidney Disease. Nutrients. 2017 Jul;9(8):9. https://doi.org/10.3390/nu9080824 DOI: https://doi.org/10.3390/nu9080824
  108. Anderson CA, Nguyen HA. Nutrition education in the care of patients with chronic kidney disease and end-stage renal disease. Semin Dial. 2018 Mar;31(2):115–21. https://doi.org/10.1111/sdi.12681 DOI: https://doi.org/10.1111/sdi.12681
  109. Whitham D. Nutrition for the prevention and treatment of chronic kidney disease in diabetes. Can J Diabetes. 2014 Oct;38(5):344–8. https://doi.org/10.1016/j.jcjd.2014.07.222 DOI: https://doi.org/10.1016/j.jcjd.2014.07.222
  110. Hanna RM, Ghobry L, Wassef O, Rhee CM, Kalantar-Zadeh K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020;49(1-2):202–11. https://doi.org/10.1159/000504240 DOI: https://doi.org/10.1159/000504240
  111. Schuetz P, Fehr R, Baechli V, Geiser M, Deiss M, Gomes F, et al. Individualised nutritional support in medical inpatients at nutritional risk: a randomised clinical trial. Lancet. 2019 Jun;393(10188):2312–21. https://doi.org/10.1016/S0140-6736(18)32776-4 DOI: https://doi.org/10.1016/S0140-6736(18)32776-4

Most read articles by the same author(s)

<< < 1 2