Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 152 No. 2930 (2022)

Difficulties in diagnosis of SARS-CoV-2 myocarditis in an adolescent

  • Alessia Callegari
  • Karin Klingel
  • Janet Kelly-Geyer
  • Christoph Berger
  • Julia Geiger
  • Walter Knirsch
Cite this as:
Swiss Med Wkly. 2022;152:w30214


OBJECTIVES: We present an adolescent with cardiogenic shock due to ventricular tachycardia 2 weeks after SARS-CoV-2 infection. Acute myocarditis or myocardial dysfunction is associated with SARS-CoV-2 infection, but diagnosis may be difficult, even including endomyocardial biopsy.

CASE REPORT: A 15-year-old  healthy adolescent was admitted to our hospital 2 weeks after SARS-CoV-2 infection with cardiogenic shock due to ventricular tachycardia. After cardioversion, antiarrhythmic treatment, ventilation, and inotropic support, the severely reduced myocardial function recovered completely within 2 weeks. Cardiac magnetic resonance imaging and cardiac catheterisation including right ventricular endomyocardial biopsy revealed an increased number of CD68+ macrophages in the myocardium, but nested (RT-) polymerase chain reaction (PCR) investigations revealed no viral or bacterial DNA/RNA.

DISCUSSION: SARS-CoV-2 infection may be associated with myocarditis leading to life-threatening arrhythmia and severe myocardial systolic and diastolic dysfunction, which may be short lasting and completely recover. Although former SARS-Cov-2 infection might suggest SARS-CoV-2-associated myocarditis, definite histological diagnosis including nested PCR investigations remains difficult.


  1. Das BB, Sexon Tejtel SK, Deshpande S, Shekerdemian LS. A Review of the Cardiac and Cardiovascular Effects of COVID-19 in Adults and Children. Tex Heart Inst J. 2021 Jul;48(3):e207395.
  2. Boehmer TK, Kompaniyets L, Lavery AM, Hsu J, Ko JY, Yusuf H, et al. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data - United States, March 2020-January 2021. MMWR Morb Mortal Wkly Rep. 2021 Sep;70(35):1228–32.
  3. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020 May;116(6):1097–100.
  4. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003 Nov;426(6965):450–4.
  5. de Cevins C, Luka M, Smith N, Meynier S, Magérus A, Carbone F, et al.; Pediatric-Biocovid Study Group. A monocyte/dendritic cell molecular signature of SARS-CoV-2-related multisystem inflammatory syndrome in children with severe myocarditis. Med (N Y). 2021 Sep;2(9):1072–1092.e7.
  6. Anderson L, Pennell D. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Eur Heart J. 2008 Jul;29(13):1696–1696.
  7. Fried JA, Ramasubbu K, Bhatt R, Topkara VK, Clerkin KJ, Horn E, et al. The Variety of Cardiovascular Presentations of COVID-19. Circulation. 2020 Jun;141(23):1930–6.
  8. Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020 May;22(5):911–5.
  9. Bojkova D, Wagner JU, Shumliakivska M, Aslan GS, Saleem U, Hansen A, et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res. 2020 Dec;116(14):2207–15.
  10. Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: therapeutic implications. Life Sci. 2020 Sep;256:117905.
  11. Abosaif N, Tolba Y. RIFLE classification of acute kidney failure in intensive care. Br J Hosp Med (Lond). 2007 Jun;68(6):304–6.
  12. Burkhardt BE, Menghini C, Rücker B, Kellenberger CJ, Valsangiacomo Buechel ER. Normal myocardial native T1 values in children using single-point saturation recovery and modified look-locker inversion recovery (MOLLI). J Magn Reson Imaging. 2020 Mar;51(3):897–903.
  13. Maceira AM, Monmeneu JV, Igual-Muñoz B, Lopez-Lereu PM, Garcia PM, Cosin J. Reference values for regional and global myocardial T2 mapping with cardiovascular magnetic resonance at 1.5T and 3T. J Cardiovasc Magn Reson. 2015 Feb;17(1):12.
  14. Alsaied T, Tseng SY, Siddiqui S, Patel P, Khoury PR, Crotty EJ, et al. Pediatric Myocardial T1 and T2 Value Associations with Age and Heart Rate at 1.5 T. Pediatr Cardiol. 2021 Feb;42(2):269–77.
  15. Caforio ALP, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013 Sep;34(33):2636–48, 2648a–2648d.
  16. Toubiana J, Poirault C, Corsia A, Bajolle F, Fourgeaud J, Angoulvant F, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. 2020 Jun;369:m2094.
  17. Henrina J, Putra IC, Lawrensia S, Marta DS, Wijaya E, Saboe A, et al. Cardiac manifestations, treatment characteristics, and outcomes of paediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus-2: A systematic review. Prog Pediatr Cardiol. 2021 Dec;63:101365.
  18. Cantarutti N, Battista V, Adorisio R, Cicenia M, Campanello C, Listo E, et al. Cardiac Manifestations in Children with SARS-COV-2 Infection: 1-Year Pediatric Multicenter Experience. Children (Basel). 2021 Aug;8(8):717.
  19. Gozar L, Șuteu CC, Gabor-Miklosi D, Cerghit-Paler A, Făgărășan A. Diagnostic Difficulties in a Case of Fetal Ventricular Tachycardia Associated with Neonatal COVID Infection: case Report. Int J Environ Res Public Health. 2021 Dec;18(23):12796.
  20. Tseng YS, Herron C, Garcia R, Cashen K. Sustained ventricular tachycardia in a paediatric patient with acute COVID-19 myocarditis. Cardiol Young. 2021 Sep;31(9):1510–2.
  21. Bemtgen X, Klingel K, Hufnagel M, Janda A, Bode C, Staudacher DL, et al. Case Report: Lymphohistiocytic Myocarditis With Severe Cardiogenic Shock Requiring Mechanical Cardiocirculatory Support in Multisystem Inflammatory Syndrome Following SARS-CoV-2 Infection. Front Cardiovasc Med. 2021 Sep;8:716198.
  22. Brighenti M, Donti A, Giulia Gagliardi M, Maschietto N, Marini D, Lombardi M, et al.; Italian Society of Pediatric Cardiology. Endomyocardial biopsy safety and clinical yield in pediatric myocarditis: an Italian perspective. Catheter Cardiovasc Interv. 2016 Mar;87(4):762–7.
  23. Basso C, Leone O, Rizzo S, De Gaspari M, van der Wal AC, Aubry MC, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020 Oct;41(39):3827–35.
  24. Weckbach LT, Schweizer L, Kraechan A, Bieber S, Ishikawa-Ankerhold H, Hausleiter J, et al.; EMB Study Group. Association of Complement and MAPK Activation With SARS-CoV-2-Associated Myocardial Inflammation. JAMA Cardiol. 2022 Mar;7(3):286–97.
  25. Craver R, Huber S, Sandomirsky M, McKenna D, Schieffelin J, Finger L. Fatal Eosinophilic Myocarditis in a Healthy 17-Year-Old Male with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2c). Fetal Pediatr Pathol. 2020 Jun;39(3):263–8.
  26. Laurence C, Haini M, Thiruchelvam T, Derrick G, Burch M, Yates RW, et al. Endomyocardial Biopsy in a Pediatric Patient With Cardiac Manifestations of COVID-19. Circ Heart Fail. 2020 Nov;13(11):e007384.
  27. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin [Erratum in: Eur Heart J. 2021 Jan 7;42] [2] [:191. PMID: 32176300; PMCID: PMC7184348]. Eur Heart J. 2021 Jan;42(2):206.
  28. Petersen SE, Friedrich MG, Leiner T, Elias MD, Ferreira VM, Fenski M, et al. Cardiovascular Magnetic Resonance for Patients With COVID-19. JACC cardiovasc imaging (Print) [Internet]. 2021 [cited 2022 Jan 22]; Available from:
  29. Galea N, Marchitelli L, Pambianchi G, Catapano F, Cundari G, Birtolo LI, et al. T2-mapping increase is the prevalent imaging biomarker of myocardial involvement in active COVID-19: a Cardiovascular Magnetic Resonance study. J Cardiovasc Magn Reson. 2021 Jun;23(1):68.
  30. Ojha V, Verma M, Pandey NN, Mani A, Malhi AS, Kumar S, et al. Cardiac Magnetic Resonance Imaging in Coronavirus Disease 2019 (COVID-19): A Systematic Review of Cardiac Magnetic Resonance Imaging Findings in 199 Patients. J Thorac Imaging. 2021 Mar;36(2):73–83.
  31. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: expert Recommendations. J Am Coll Cardiol. 2018 Dec;72(24):3158–76.

Most read articles by the same author(s)

1 2 > >>