Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 152 No. 2728 (2022)

Retrospective data analysis for definition of multidrug resistance in gram-negative bacteria – a consensus proposal

  • Olivier Friedli
  • Irene Völlmy
  • Jacques Schrenzel
  • Stephan Harbarth
  • Andreas Kronenberg
DOI
https://doi.org/10.4414/SMW.2022.w30195
Cite this as:
Swiss Med Wkly. 2022;152:w30195
Published
11.07.2022

Abstract

AIM OF THE STUDY: The main objective of this study was to propose a common definition of multidrug-resistant gram-negative organisms (GN-MDRO), which may be used for epidemiological surveillance and benchmarking.

METHODS: In this retrospective data analysis, we used interpreted qualitative susceptibility data (SIR) from blood culture isolates of different gram-negative microorganisms from the ANRESIS database from 2017–2021. We first analysed testing algorithms used by different Swiss laboratories and investigated cross-resistance patterns within antibiotic groups. Comparing these data with existing international definitions, we developed two different GN-MDRO definitions, an extended one for surveillance purposes (ANRESIS-extended) and a more stringent one for clinical purposes, aimed primarily at the identification of difficult-to-treat GN-MDRO (ANRESIS-restricted). Using these novel algorithms, the rates of invasive GN-MDRO identified in our national dataset were compared with international and national definitions: the European Centre for Disease Prevention and Control (ECDC) definition, the Commission for Hospital Hygiene and Infection (KRINKO) definition and the definition proposed by the University Hospital Zurich.

RESULTS: SIR data of a total of 41,785 Enterobacterales, 2,919 , and 419 spp. isolates were used for the analyses. Five antibiotic categories were used for our MDRO definition: aminoglycosides, piperacillin-tazobactam, third- and fourth-generation cephalosporins, carbapenems and fluoroquinolones. Large differences were found between the testing algorithms of the different laboratories. Cross-resistance analysis within an antibiotic group revealed that the substance most likely to be effective against a particular gram-negative bacterium was not preferentially tested (e.g. amikacin for the aminoglycosides). For all bacterial species tested, the highest rates of multidrug-resistant isolates were found using the ECDC-MDR definition, followed by the ANRESIS-extended definition. The number of MDR-Enterobacterales identified using the ANRESIS-restricted definition (n = 627) was comparable to those identified using the KRINKO (n = 622) and UHZ definitions (n = 437). However, the isolates classified as MDR-Enterobacterales according to the KRINKO, UHZ and ANRESIS-restricted definitions (total n = 870) differed considerably. Only 242 of the isolates (27.8%) were uniformly classified as MDRO according to the KRINKO, UHZ and ANRESIS-restricted definitions. Comparable findings were made for Klebsiella spp. and Pseudomonas aeruginosa.

CONCLUSIONS: The application of different MDRO definitions leads to significant differences in not only MDRO rates but also the isolates that are eventually classified as MDRO. Therefore, defining a nationwide MDRO algorithm is crucial if data are compared between hospitals. The definition of a minimal antibiotic susceptibility testing panel would improve comparability further.

References

  1. Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S, et al. Society’s failure to protect a precious resource: antibiotics. Lancet. 2011 Jul;378(9788):369–71. https://doi.org/10.1016/S0140-6736(11)60401-7
  2. Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo). 2017 May;70(5):520–6. https://doi.org/10.1038/ja.2017.30
  3. Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A, et al.; EPI-Net COMBACTE-MAGNET Group. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018 Mar;18(3):e99–106. https://doi.org/10.1016/S1473-3099(17)30485-1
  4. Mehrad B, Clark NM, Zhanel GG, Lynch JP 3rd. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest. 2015 May;147(5):1413–21. https://doi.org/10.1378/chest.14-2171
  5. Stewardson AJ, Marimuthu K, Sengupta S, Allignol A, El-Bouseary M, Carvalho MJ, et al. Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): a multinational prospective cohort study. Lancet Infect Dis. 2019 Jun;19(6):601–10. https://doi.org/10.1016/S1473-3099(18)30792-8
  6. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al.; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009 Dec;302(21):2323–9. https://doi.org/10.1001/jama.2009.1754
  7. Roth JA, Hornung-Winter C, Radicke I, Hug BL, Biedert M, Abshagen C, et al. Direct Costs of a Contact Isolation Day: A Prospective Cost Analysis at a Swiss University Hospital. Infect Control Hosp Epidemiol. 2018 Jan;39(1):101–3. https://doi.org/10.1017/ice.2017.258
  8. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar;18(3):268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  9. KRINKO. Anforderungen an die Hygiene bei der Aufbereitung von Medizinprodukten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012 Oct;55(10):1244–310. https://doi.org/10.1007/s00103-012-1548-6
  10. Wolfensberger A, Kuster SP, Marchesi M, Zbinden R, Hombach M. The effect of varying multidrug-resistence (MDR) definitions on rates of MDR gram-negative rods. Antimicrob Resist Infect Control. 2019 Nov;8(1):193. https://doi.org/10.1186/s13756-019-0614-3
  11. Gasser M, Schrenzel J, Kronenberg A. für das Schweizerische Zentrum für Antibiotikaresistenzen. Aktuelle Entwicklung der Antibiotikaresistenzen in der Schweiz. Swiss Med Forum. 2018;18(46):943-949. https://doi.org/https://doi.org/10.4414/smf.2018.03404
  12. Tacconelli E, Buhl M, Humphreys H, Malek V, Presterl E, Rodriguez-Baño J, et al.; EUCIC StopNegative group. Analysis of the challenges in implementing guidelines to prevent the spread of multidrug-resistant gram-negatives in Europe. BMJ Open. 2019 May;9(5):e027683. https://doi.org/10.1136/bmjopen-2018-027683
  13. Ramirez MS, Tolmasky ME. Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules. 2017 Dec;22(12):E2267. https://doi.org/10.3390/molecules22122267
  14. Van Looveren M, Goossens H, Group AS ; ARPAC Steering Group. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect. 2004 Aug;10(8):684–704. https://doi.org/10.1111/j.1469-0691.2004.00942.x
  15. Nowak J, Zander E, Stefanik D, Higgins PG, Roca I, Vila J, et al.; MagicBullet Working Group WP4. High incidence of pandrug-resistant Acinetobacter baumannii isolates collected from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother. 2017 Dec;72(12):3277–82. https://doi.org/10.1093/jac/dkx322
  16. Ekkelenkamp MB, Cantón R, Díez-Aguilar M, Tunney MM, Gilpin DF, Bernardini F, et al. Susceptibility of Pseudomonas aeruginosa Recovered from Cystic Fibrosis Patients to Murepavadin and 13 Comparator Antibiotics. Antimicrob Agents Chemother. 2020 Jan;64(2):e01541-19. https://doi.org/10.1128/AAC.01541-19
  17. The European Committee on Antimicrobial Susceptibility. 2021, Testing.https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2021/Intrinsic_Resistance_and_Unusual_Phenotypes_Tables_v3.3_20211018.pdf
  18. Lutgring JD, Limbago BM. The Problem of Carbapenemase-Producing-Carbapenem-Resistant-Enterobacteriaceae Detection. J Clin Microbiol. 2016 Mar;54(3):529–34. https://doi.org/10.1128/JCM.02771-15
  19. NARA, The National Reference Center for Emerging Antibiotic Resistance, unifr.ch/med/nara/ (Accessed 11 Jan. 2022).
  20. Heinemann B, Wisplinghoff H, Edmond M, Seifert H. Comparative activities of ciprofloxacin, clinafloxacin, gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, and trovafloxacin against epidemiologically defined Acinetobacter baumannii strains. Antimicrob Agents Chemother. 2000 Aug;44(8):2211–3. https://doi.org/10.1128/AAC.44.8.2211-2213.2000
  21. Kaase M. MRGN: neue Klassifikation für multiresistente gramnegative Bakterien. Laboratoriumsmedizin (Berl). 2013;37(6):299–304. https://doi.org/10.1515/labmed-2012-0067
  22. Kronenberg A, Hilty M, Endimiani A, Muhlemann K. Temporal trends of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates in in- and outpatients in Switzerland, 2004 to 2011. Euro Surveill. 2013 May;18(21):20484. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23725981 https://doi.org/10.2807/ese.18.21.20484-en
  23. Jacoby, G. A. (2009, Jan). AmpC beta-lactamases. Clin Microbiol Rev, 22(1), 161-182, Table of Contents. https://doi.org/https://doi.org/10.1128/CMR.00036-08
  24. Huh K, Chung DR, Ha YE, Ko JH, Kim SH, Kim MJ, et al.; Korean Antimicrobial Resistance Surveillance Network (KARS-Net) Investigators. Impact of Difficult-to-Treat Resistance in Gram-negative Bacteremia on Mortality: Retrospective Analysis of Nationwide Surveillance Data. Clin Infect Dis. 2020 Dec;71(9):e487–96. https://doi.org/10.1093/cid/ciaa084

Most read articles by the same author(s)