Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 151 No. 4142 (2021)

Heart rate profiles and heart rate variability during scuba diving

  • Claudine Schaller
  • Andrea Fümm
  • Simon Bachmann
  • Luca Oechslin
  • Yoshi Nakahara
  • Roger Melliger
  • Patric Biaggi
  • Christophe Alain Wyss
Cite this as:
Swiss Med Wkly. 2021;151:w30039


AIMS: The aim of the present study was to describe heart rate profiles and heart rate variability patterns in non-selected scuba divers of different ages under non-experimental real-world conditions.

METHODS: We used specially designed silver-loaded polydimethylsiloxane dry electrodes for underwater ECG recordings. With a custom-built setup, heart rate profiles and heart rate variability patterns were documented before submersion, during diving and after resurfacing in 18 separate dives.

RESULTS: Heart rates of the divers just before descent were remarkably high (median 114 bpm, interquartile range [IQR] 83–154) with a statistically significant rapid decrease after submersion (median 90 bpm, IQR 70–116; p = 0.008). The percentage heart rate reduction by submersion was individually very variable (median 21%, range 5–39%). We noted a general increase in autonomic nervous system (ANS) activity without predominance of parasympathetic parameters, suggesting a concomitant sympatheticadrenergic activation.

CONCLUSIONS: Scuba diving under real-world conditions by non-selected divers is characterised by relatively high heart rates just before submersion, an individually variable but significant bradycardic dive response, and induces an immediate and sustained parallel increase of parasympathetic and sympathetic-adrenergic autonomic nervous system activity. These observations could explain several specific pathophysiological mechanisms of diving incidents (haemodynamic decompensation, arrhythmias, acute coronary syndromes) and underlines the importance of cardiovascular risk stratification in diving eligibility assessment.


  1. Vega JL. Edmund Goodwyn and the first description of diving bradycardia. J Appl Physiol (1985). 2017;123(2):275-7.
  2. Goodwyn E. Dissertatio medica inauguralis, de morbo morteque submersorum investigandis [Diss - Edinburgh]. Edinburgi,1786.
  3. Bert P. Leçons sur la physiologie comparée de la respiration professées au Muséum d'histoire naturelle. Paris: Baillière; 1870. xxxv, 588 p. p.
  4. Richet C. La resistance des canards a l’asphyxie. C R Soc Biol Paris. 1894;1:244–5.
  5. Richet C. De la resistance des canards a l’asphyxie. J Physiol Pathol Gen. 1899;1:641–50.
  6. Irving L, Scholander P, Grinnell S. The regulation of arterial blood pressure in the seal during diving. Am J Physiol. 1942;135(3):557–66.
  7. Scholander PF. Hvalradets Skrifter. Experimental Investigations on the Respiratory Function in Diving Mammals and Birds. Oslo: Det Norske Videnskaps Akademi. 1940(22).
  8. Panneton WM. The mammalian diving response: an enigmatic reflex to preserve life? Physiology (Bethesda). 2013 Sep;28(5):284–97.
  9. Alboni P, Alboni M, Gianfranchi L. Diving bradycardia: a mechanism of defence against hypoxic damage. J Cardiovasc Med (Hagerstown). 2011 Jun;12(6):422–7.
  10. Song SH, Lee WK, Chung YA, Hong SK. Mechanism of apneic bradycardia in man. J Appl Physiol. 1969 Sep;27(3):323–7.
  11. Goldbogen JA, Cade DE, Calambokidis J, Czapanskiy MF, Fahlbusch J, Friedlaender AS, et al. Extreme bradycardia and tachycardia in the world’s largest animal. Proc Natl Acad Sci USA. 2019 Dec;116(50):25329–32.
  12. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health. 1990;16 Suppl 1:55–8.
  13. Reyes BA, Posada-Quintero HF, Bales JR, Clement AL, Pins GD, Swiston A, et al. Novel electrodes for underwater ECG monitoring. IEEE Trans Biomed Eng. 2014 Jun;61(6):1863–76.
  14. Stauffer F, Thielen M, Sauter C, Chardonnens S, Bachmann S, Tybrandt K, et al. Skin Conformal Polymer Electrodes for Clinical ECG and EEG Recordings. Adv Healthc Mater. 2018 Apr;7(7):e1700994.
  15. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, et al.; Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996 Mar;17(3):354–81.
  16. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000 Jun;101(23):E215–20.
  17. Vest AN, Da Poian G, Li Q, Liu C, Nemati S, Shah AJ, et al. An open source benchmarked toolbox for cardiovascular waveform and interval analysis. Physiol Meas. 2018 Oct;39(10):105004.
  18. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011 Aug;43(8):1575–81.
  19. Smyth A, O’Donnell M, Lamelas P, Teo K, Rangarajan S, Yusuf S ; INTERHEART Investigators. Physical Activity and Anger or Emotional Upset as Triggers of Acute Myocardial Infarction: the INTERHEART Study. Circulation. 2016 Oct;134(15):1059–67.
  20. Casadesús JM, Aguirre F, Carrera A, Boadas-Vaello P, Serrando MT, Reina F. Diving-related fatalities: multidisciplinary, experience-based investigation. Forensic Sci Med Pathol. 2019 Jun;15(2):224–32.
  21. Gooden BA. Mechanism of the human diving response. Integr Physiol Behav Sci. 1994 Jan-Mar;29(1):6–16.
  22. Noh Y, Posada-Quintero HF, Bai Y, White J, Florian JP, Brink PR, et al. Effect of Shallow and Deep SCUBA Dives on Heart Rate Variability. Front Physiol. 2018 Feb;9:110.
  23. Mano T, Iwase S, Yamazaki Y, Saito M. Sympathetic nervous adjustments in man to simulated weightlessness induced by water immersion. J UOEH. 1985 Mar;7 Suppl:215–27.
  24. Epstein M. Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev. 1992 Jul;72(3):563–621.
  25. Lund V, Kentala E, Scheinin H, Klossner J, Sariola-Heinonen K, Jalonen J. Hyperbaric oxygen increases parasympathetic activity in professional divers. Acta Physiol Scand. 2000 Sep;170(1):39–44.
  26. Mourot L, Bouhaddi M, Gandelin E, Cappelle S, Nguyen NU, Wolf JP, et al. Conditions of autonomic reciprocal interplay versus autonomic co-activation: effects on non-linear heart rate dynamics. Auton Neurosci. 2007 Dec;137(1-2):27–36.
  27. Srámek P, Simecková M, Janský L, Savlíková J, Vybíral S. Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol. 2000 Mar;81(5):436–42.
  28. Flouris AD, Scott JM. Heart rate variability responses to a psychologically challenging scuba dive. J Sports Med Phys Fitness. 2009 Dec;49(4):382–6.
  29. Schipke JD, Pelzer M. Effect of immersion, submersion, and scuba diving on heart rate variability. Br J Sports Med. 2001 Jun;35(3):174–80.
  30. Chouchou F, Pichot V, Garet M, Barthélémy JC, Roche F. Dominance in cardiac parasympathetic activity during real recreational SCUBA diving. Eur J Appl Physiol. 2009 Jun;106(3):345–52.
  31. Lundell RV, Räisänen-Sokolowski AK, Wuorimaa TK, Ojanen T, Parkkola KI. Diving in the Arctic: Cold Water Immersion’s Effects on Heart Rate Variability in Navy Divers. Front Physiol. 2020 Jan;10:1600.
  32. Shattock MJ, Tipton MJ. ‘Autonomic conflict’: a different way to die during cold water immersion? J Physiol. 2012 Jul;590(14):3219–30.
  33. Ostlund A, Linnarsson D. Slowing and attenuation of baroreflex heart rate control with nitrous oxide in exercising men. J Appl Physiol (1985). 1999;87(2):830-4.

Most read articles by the same author(s)