Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 151 No. 1920 (2021)

Efficacy of non-invasive intelligent volume assured pressure support (iVAPS) and pressure support ventilation (PSV) in clinical practice

DOI
https://doi.org/10.4414/smw.2021.20506
Cite this as:
Swiss Med Wkly. 2021;151:w20506
Published
12.05.2021

Summary

AIMS OF THE STUDY

Noninvasive ventilation (NIV) is a well-established treatment option for hypercapnic respiratory failure; however, the best mode of ventilation remains unknown. The aim of this retrospective study was to compare patients’ adherence to NIV using either pressure support ventilation (PSV) or intelligent volume-assured pressure support (iVAPS).

PATIENTS AND METHODS

In this retrospective cohort study, we assessed in- and outpatients suffering from hypercapnic respiratory failure of various aetiologies (chronic obstructive pulmonary disease [COPD], obese COPD [body mass index >30 kg/m2], obesity hypoventilation syndrome and other diseases such as amyotrophic lateral sclerosis or interstitial lung disease) after NIV initiation with PSV or iVAPS. Adherence to treatment was compared between these modes using the Wilcoxon test. Within-group differences were tested using linear regression models. Mortality and emergency hospital readmission rates were modelled using Kaplan-Meier estimates and Cox proportional hazards models.

RESULTS

Adherence to treatment was similar in both groups throughout the observation period – after 6 weeks: PSV 363 min/night (interquartile range [IQR] 200–448), iVAPS 369 min/night (IQR 310–468) (p = 0.619); after 1 year: PSV 423 (323–500), iVAPS 429 (298–475) (p = 0.901); at the last follow up: PSV 481 (395–586), iVAPS 426 (391–565) (p = 0.284). NIV reduced PaCO2 significantly compared with baseline at all follow-ups: PSV −1.29/−1.49/−1.49 kPa, iVAPS −1.47/−1.23/−1.24 kPa, p <0.001 each, PSV vs iVAPS: p = 0.250, 0.756 and 0.352, respectively. Median survival time (PSV 5.06 years, iVAPS median not reached; p = 0.800) and time to first readmission (PSV 3.6 years, iVAPS 7.33 years, p = 0.200) did not differ between groups. Obese COPD patients had a longer time to hospital readmission than lean COPD patients (3.8 vs 1.5 years, hazard ratio (HR) 0.39, 95% confidence interval [CI] 0.16–0. 74; p = 0.007). Good adherence (>4 h/night and >80% nightly usage) was associated with a lower mortality rate (HR 0.34, 95% CI 0.15–0.77; p = 0.010).

CONCLUSION

In a real-world setting of a mixed population with hypercapnic respiratory failure, iVAPS and PSV seem to be similarly effective in improving gas exchange and demonstrate excellent adherence to treatment. A longer survival was noted in NIV-adherent patients. Randomised controlled studies are necessary to identify patients who might benefit more from hybrid ventilation modes.

References

  1. Shneerson JM Simonds AK. Noninvasive ventilation for chest wall and neuromuscular disorders. Eur Respir J. 2002;20(2):480–7. doi:.https://doi.org/10.1183/09031936.02.00404002
  2. Janssens J-P Derivaz S Breitenstein E De Muralt B Fitting J-W Chevrolet J-C Changing patterns in long-term noninvasive ventilation: a 7-year prospective study in the Geneva Lake area. Chest. 2003;123(1):67–79. doi:.https://doi.org/10.1378/chest.123.1.67
  3. Czell D Bauer M Binek J Schoch OD Weber M. Outcomes of percutaneous endoscopic gastrostomy tube insertion in respiratory impaired amyotrophic lateral sclerosis patients under noninvasive ventilation. Respir Care. 2013;58(5):838–44.
  4. Murphy PB Rehal S Arbane G Bourke S Calverley PMA Crook AM Effect of home noninvasive ventilation with oxygen therapy vs oxygen therapy alone on hospital readmission or death after an acute COPD exacerbation. JAMA. 2017;317(21):2177–86. doi:.https://doi.org/10.1001/jama.2017.4451
  5. Lloyd-Owen SJ Donaldson GC Ambrosino N Escarabill J Farre R Fauroux B Patterns of home mechanical ventilation use in Europe: results from the Eurovent survey. Eur Respir J. 2005;25(6):1025–31. doi:.https://doi.org/10.1183/09031936.05.00066704
  6. Arellano-Maric MP Gregoretti C Duiveman M Windisch W. Long-term volume-targeted pressure-controlled ventilation: sense or nonsense? Eur Respir J. 2017;49(6):1602193. doi:.https://doi.org/10.1183/13993003.02193-2016
  7. Storre JH Seuthe B Fiechter R Milioglou S Dreher M Sorichter S Average volume-assured pressure support in obesity hypoventilation: A randomized crossover trial. Chest. 2006;130(3):815–21. doi:.https://doi.org/10.1378/chest.130.3.815
  8. Janssens J-P Metzger M Sforza E. Impact of volume targeting on efficacy of bi-level non-invasive ventilation and sleep in obesity-hypoventilation. Respir Med. 2009;103(2):165–72. doi:.https://doi.org/10.1016/j.rmed.2008.03.013
  9. Ekkernkamp E Storre JH Windisch W Dreher M. Impact of intelligent volume-assured pressure support on sleep quality in stable hypercapnic chronic obstructive pulmonary disease patients: a randomized, crossover study. Respiration. 2014;88(4):270–6. doi:.https://doi.org/10.1159/000364946
  10. Murphy PB Davidson C Hind MD Simonds A Williams AJ Hopkinson NS Volume targeted versus pressure support non-invasive ventilation in patients with super obesity and chronic respiratory failure: a randomised controlled trial. Thorax. 2012;67(8):727–34. doi:.https://doi.org/10.1136/thoraxjnl-2011-201081
  11. Storre JH Matrosovich E Ekkernkamp E Walker DJ Schmoor C Dreher M Home mechanical ventilation for COPD: high-intensity versus target volume noninvasive ventilation. Respir Care. 2014;59(9):1389–97. doi:.https://doi.org/10.4187/respcare.02941
  12. Jaye J Chatwin M Dayer M Morrell MJ Simonds AK. Autotitrating versus standard noninvasive ventilation: a randomised crossover trial. Eur Respir J. 2009;33(3):566–71. doi:.https://doi.org/10.1183/09031936.00065008
  13. Dreher M Krüger S Schulze-Olden S Keszei A Storre JH Woehrle H Sleep-disordered breathing in patients with newly diagnosed lung cancer. BMC Pulm Med. 2018;18(1):72. doi:.https://doi.org/10.1186/s12890-018-0645-1
  14. Nilius G Katamadze N Domanski U Schroeder M Franke K-J. Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia. Int J Chron Obstruct Pulmon Dis. 2017;12:1039–45. doi:.https://doi.org/10.2147/COPD.S126970
  15. Howard ME Piper AJ Stevens B Holland AE Yee BJ Dabscheck E A randomised controlled trial of CPAP versus non-invasive ventilation for initial treatment of obesity hypoventilation syndrome. Thorax. 2017;72(5):437–44. doi:.https://doi.org/10.1136/thoraxjnl-2016-208559
  16. McArdle N Rea C King S Maddison K Ramanan D Ketheeswaran S Treating chronic hypoventilation with automatic adjustable versus fixed EPAP intelligent volume-assured positive airway pressure support (iVAPS): a randomized controlled trial. Sleep (Basel). 2017;40(10). doi:.https://doi.org/10.1093/sleep/zsx136
  17. Orr JE Coleman J Criner GJ Sundar KM Tsai SC Benjafield AV Automatic EPAP intelligent volume-assured pressure support is effective in patients with chronic respiratory failure: A randomized trial. Respirology. 2019;24(12):1204–11. doi:.https://doi.org/10.1111/resp.13546
  18. Kelly JL Jaye J Pickersgill RE Chatwin M Morrell MJ Simonds AK. Randomized trial of ‘intelligent’ autotitrating ventilation versus standard pressure support non-invasive ventilation: impact on adherence and physiological outcomes. Respirology. 2014;19(4):596–603. doi:.https://doi.org/10.1111/resp.12269
  19. Cantero C Adler D Pasquina P Uldry C Egger B Prella M Long-term noninvasive ventilation in the Geneva lake area: indications, prevalence, and modalities. Chest. 2020;158(1):279–91. doi:.https://doi.org/10.1016/j.chest.2020.02.064
  20. Masa JF Celli BR Riesco JA Hernández M Sánchez De Cos J Disdier C. The obesity hypoventilation syndrome can be treated with noninvasive mechanical ventilation. Chest. 2001;119(4):1102–7. doi:.https://doi.org/10.1378/chest.119.4.1102
  21. Ojeda Castillejo E de Lucas Ramos P López Martin S Resano Barrios P Rodríguez Rodríguez P Morán Caicedo L Noninvasive mechanical ventilation in patients with obesity hypoventilation syndrome. Long-term outcome and prognostic factors. Arch Bronconeumol. 2015;51(2):61–8. doi:.https://doi.org/10.1016/j.arbr.2014.06.016
  22. Köhnlein T Windisch W Köhler D Drabik A Geiseler J Hartl S Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med. 2014;2(9):698–705. doi:.https://doi.org/10.1016/S2213-2600(14)70153-5
  23. Simonds AK Elliott MW. Outcome of domiciliary nasal intermittent positive pressure ventilation in restrictive and obstructive disorders. Thorax. 1995;50(6):604–9. doi:.https://doi.org/10.1136/thx.50.6.604
  24. Bach JR Alba AS Saporito LR. Intermittent positive pressure ventilation via the mouth as an alternative to tracheostomy for 257 ventilator users. Chest. 1993;103(1):174–82. doi:.https://doi.org/10.1378/chest.103.1.174
  25. Nickol AH Hart N Hopkinson NS Moxham J Simonds A Polkey MI. Mechanisms of improvement of respiratory failure in patients with restrictive thoracic disease treated with non-invasive ventilation. Thorax. 2005;60(9):754–60. doi:.https://doi.org/10.1136/thx.2004.039388
  26. Borel JC Pepin JL Pison C Vesin A Gonzalez-Bermejo J Court-Fortune I Long-term adherence with non-invasive ventilation improves prognosis in obese COPD patients. Respirology. 2014;19(6):857–65. doi:.https://doi.org/10.1111/resp.12327
  27. Kapur VK Auckley DH Chowdhuri S Kuhlmann DC Mehra R Ramar K Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2017;13(3):479–504. doi:.https://doi.org/10.5664/jcsm.6506
  28. Horvath CM Brutsche MH Schoch OD Schillig B Baty F vonOw D NIV by an interdisciplinary respiratory care team in severe respiratory failure in the emergency department limited to day time hours. Intern Emerg Med. 2017;12(8):1215–23. doi:.https://doi.org/10.1007/s11739-016-1546-z
  29. Urbanek S, Bibiko H-J, Stefano ML. R: a language and environment for statistical computing. The R Foundation for Statistical Computing; 2014.
  30. Contal O Adler D Borel J-C Espa F Perrig S Rodenstein D Impact of different backup respiratory rates on the efficacy of noninvasive positive pressure ventilation in obesity hypoventilation syndrome: a randomized trial. Chest. 2013;143(1):37–46. doi:.https://doi.org/10.1378/chest.11-2848
  31. Masa JF Corral J Caballero C Barrot E Terán-Santos J Alonso-Álvarez ML Spanish Sleep Network. Non-invasive ventilation in obesity hypoventilation syndrome without severe obstructive sleep apnoea. Thorax. 2016;71(10):899–906. doi:.https://doi.org/10.1136/thoraxjnl-2016-208501
  32. Masa JF Mokhlesi B Benítez I Gomez de Terreros FJ Sánchez-Quiroga MÁ Romero A Spanish Sleep Network. Long-term clinical effectiveness of continuous positive airway pressure therapy versus non-invasive ventilation therapy in patients with obesity hypoventilation syndrome: a multicentre, open-label, randomised controlled trial. Lancet. 2019;393(10182):1721–32. doi:.https://doi.org/10.1016/S0140-6736(18)32978-7
  33. Windisch W Quality of life in home mechanical ventilation study group. Impact of home mechanical ventilation on health-related quality of life. Eur Respir J. 2008;32(5):1328–36. doi:.https://doi.org/10.1183/09031936.00066407

Most read articles by the same author(s)