Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 150 No. 5153 (2020)

Active clearance of chest tubes after cardiac surgery: a propensity score matched analysis

Cite this as:
Swiss Med Wkly. 2020;150:w20394



Chest tubes inserted to drain shed mediastinal blood after cardiac surgery often become clogged, limiting their capacity to evacuate blood, and leading to blood retention and retained blood syndrome. The aim of this study was the assessment of the efficacy of an active tube clearance (ATC) system in the reduction of retained blood syndrome after cardiac surgery.


This study included 2461 adult patients undergoing major cardiac surgery. Patients receiving conventional chest tubes only (n = 1980) were compared with patients receiving an ATC tube in the retrosternal position (n = 481) for interventions caused by retained blood syndrome (re-exploration for bleeding or tamponade and interventions for pleural effusion or pneumothorax), kidney replacement therapy, postoperative atrial fibrillation, sternal infection and chest tube output before and after propensity score matching.


Propensity score matching generated 471 patient-pairs balanced for their baseline characteristics. Matched patients with an ATC tube in the retrosternal position had no statistically significant difference in the rate of intervention for retained blood syndrome (33% vs 31%, p = 1), re-exploration because of bleeding or tamponade (2.5% vs 4%, p = 1), intervention for pneumothorax (4.7% vs 4.9%, p = 1) and intervention for pleural effusion (28% vs 28%, p = 1), but had statistically significantly less chest tube output on the first postoperative day (median 480, IQR 316–700 ml vs median 590, IQR 380–905 ml; p <0.0001) and second postoperative day (median 505, IQR 342–800 ml vs median 597, IQR 383–962 ml; p = 0.0012) in comparison with patients with conventional chest tubes only.


An ATC tube in the retrosternal position reduced chest tube output but showed no reduction in the rate of intervention for retained blood syndrome. Further research should be performed to test the combination of ATC in the retrosternal and the inferior pericardial space.


  1. Kinnunen EM, Juvonen T, Airaksinen KE, Heikkinen J, Kettunen U, Mariscalco G, et al. Clinical significance and determinants of the universal definition of perioperative bleeding classification in patients undergoing coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2014;148(4):1640–1646.e2. doi:.
  2. Christensen MC, Krapf S, Kempel A, von Heymann C. Costs of excessive postoperative hemorrhage in cardiac surgery. J Thorac Cardiovasc Surg. 2009;138(3):687–93. doi:.
  3. Balzer F, von Heymann C, Boyle EM, Wernecke KD, Grubitzsch H, Sander M. Impact of retained blood requiring reintervention on outcomes after cardiac surgery. J Thorac Cardiovasc Surg. 2016;152(2):595–601.e4. doi:.
  4. Shalli S, Saeed D, Fukamachi K, Gillinov AM, Cohn WE, Perrault LP, et al. Chest tube selection in cardiac and thoracic surgery: a survey of chest tube-related complications and their management. J Card Surg. 2009;24(5):503–9. doi:.
  5. Boyle EM, Jr, Gillinov AM, Cohn WE, Ley SJ, Fischlein T, Perrault LP. Retained Blood Syndrome After Cardiac Surgery: A New Look at an Old Problem. Innovations (Phila). 2015;10(5):296–303. doi:.
  6. Karimov JH, Gillinov AM, Schenck L, Cook M, Kosty Sweeney D, Boyle EM, et al. Incidence of chest tube clogging after cardiac surgery: a single-centre prospective observational study. Eur J Cardiothorac Surg. 2013;44(6):1029–36. doi:.
  7. Day TG, Perring RR, Gofton K. Is manipulation of mediastinal chest drains useful or harmful after cardiac surgery? Interact Cardiovasc Thorac Surg. 2008;7(5):878–90. doi:.
  8. Halm MA. To strip or not to strip? Physiological effects of chest tube manipulation. Am J Crit Care. 2007;16(6):609–12. doi:.
  9. Vistarini N, Gabrysz-Forget F, Beaulieu Y, Perrault LP. Tamponade Relief by Active Clearance of Chest Tubes. Ann Thorac Surg. 2016;101(3):1159–63. doi:.
  10. Arakawa Y, Shiose A, Takaseya T, Fumoto H, Kim HI, Boyle EM, et al. Superior chest drainage with an active tube clearance system: evaluation of a downsized chest tube. Ann Thorac Surg. 2011;91(2):580–3. doi:.
  11. Shiose A, Takaseya T, Fumoto H, Arakawa Y, Horai T, Boyle EM, et al. Improved drainage with active chest tube clearance. Interact Cardiovasc Thorac Surg. 2010;10(5):685–8. doi:.
  12. Perrault LP, Pellerin M, Carrier M, Cartier R, Bouchard D, Demers P, et al. The PleuraFlow Active Chest Tube Clearance System: initial clinical experience in adult cardiac surgery. Innovations (Phila). 2012;7(5):354–8. doi:.
  13. Shalli S, Boyle EM, Saeed D, Fukamachi K, Cohn WE, Gillinov AM. The active tube clearance system: a novel bedside chest-tube clearance device. Innovations (Phila). 2010;5(1):42–7. doi:.
  14. Sirch J, Ledwon M, Püski T, Boyle EM, Pfeiffer S, Fischlein T. Active clearance of chest drainage catheters reduces retained blood. J Thorac Cardiovasc Surg. 2016;151(3):832–838.e2. doi:.
  15. Engelman DT, Ben Ali W, Williams JB, Perrault LP, Reddy VS, Arora RC, et al. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery After Surgery Society Recommendations. JAMA Surg. 2019;154(8):755–66. doi:.
  16. Bellomo R, Kellum JA, Ronco C. Defining acute renal failure: physiological principles. Intensive Care Med. 2004;30(1):33–7. doi:.
  17. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28(25):3083–107. doi:.
  18. Daniel SR, Armstrong K, Silber JH, Rosenbaum PR. An Algorithm for Optimal Tapered Matching, With Application to Disparities in Survival. J Comput Graph Stat. 2008;17(4):914–24. doi:.
  19. Hansen BB, Olsen Klopfer S. Optimal Full Matching and Related Designs via Network Flows. J Comput Graph Stat. 2006;15(3):609–27. doi:.
  20. Tauriainen T, Kinnunen EM, Koski-Vähälä J, Mosorin MA, Airaksinen J, Biancari F. Outcome after procedures for retained blood syndrome in coronary surgery. Eur J Cardiothorac Surg. 2017;51(6):1078–85. doi:.
  21. Boyacıoğlu K, Kalender M, Özkaynak B, Mert B, Kayalar N, Erentuğ V. A new use of Fogarty catheter: chest tube clearance. Heart Lung Circ. 2014;23(10):e229–30. doi:.
  22. Halejian BA, Badach MJ, Trilles F. Maintaining chest tube patency. Surg Gynecol Obstet. 1988;167(6):521.
  23. Cook M, Idzior L, Bena JF, Albert NM. Nurse and patient factors that influence nursing time in chest tube management early after open heart surgery: A descriptive, correlational study. Intensive Crit Care Nurs. 2017;42:116–21. doi:.
  24. Fabre O, Vincentelli A, Corseaux D, Juthier F, Susen S, Bauters A, et al. Comparison of blood activation in the wound, active vent, and cardiopulmonary bypass circuit. Ann Thorac Surg. 2008;86(2):537–41. doi:.
  25. Dixon B, Santamaria JD, Reid D, Collins M, Rechnitzer T, Newcomb AE, et al. The association of blood transfusion with mortality after cardiac surgery: cause or confounding? (CME). Transfusion. 2013;53(1):19–27. doi:.
  26. Christensen MC, Dziewior F, Kempel A, von Heymann C. Increased chest tube drainage is independently associated with adverse outcome after cardiac surgery. J Cardiothorac Vasc Anesth. 2012;26(1):46–51. doi:.
  27. Grieshaber P, Heim N, Herzberg M, Niemann B, Roth P, Boening A. Active Chest Tube Clearance After Cardiac Surgery Is Associated With Reduced Reexploration Rates. Ann Thorac Surg. 2018;105(6):1771–7. doi:.
  28. Maltais S, Davis ME, Haglund NA, Perrault L, Kushwaha SS, Stulak JM, et al. Active Clearance of Chest Tubes Reduces Re-Exploration for Bleeding After Ventricular Assist Device Implantation. ASAIO J. 2016;62(6):704–9. doi:.
  29. St-Onge S, Ben Ali W, Bouhout I, Bouchard D, Lamarche Y, Perrault LP, et al. Examining the impact of active clearance of chest drainage catheters on postoperative atrial fibrillation. J Thorac Cardiovasc Surg. 2017;154(2):501–8. doi:.

Most read articles by the same author(s)