Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 150 No. 3738 (2020)

Homonymous visual field defects in patients with multiple sclerosis: results of computerised perimetry and optical coherence tomography

  • Lydia Schmutz
  • François-Xavier Borruat
DOI
https://doi.org/10.4414/smw.2020.20319
Cite this as:
Swiss Med Wkly. 2020;150:w20319
Published
17.09.2020

Abstract

AIMS OF THE STUDY

Visual dysfunction is frequent in multiple sclerosis, usually resulting from retrobulbar optic neuritis or papillitis. Less frequently, demyelinating lesions can affect the retrochiasmal pathways. There are few reports of homonymous visual field defects (HVFD) in multiple sclerosis and little is known about their evolution. The purpose of this study was to better define both the clinical profile and the evolution of HVFD in patients with multiple sclerosis.

METHODS

We performed a retrospective study of all multiple sclerosis patients who presented HVFD and were examined by automated static perimetry. A subset of patients benefited from macular assessment with optical coherence tomography (OCT). We also reviewed the worldwide literature on the subject.

RESULTS

Twenty patients were retrieved from the neuro-ophthalmology database of the Hôpital Ophtalmique Jules-Gonin. There were 11 women and 9 men, and their average age was 35 ± 11 years. The relapsing-remitting form of multiple sclerosis was most common (18/20; 90%), the primary progressive form (1/20; 5%) and the secondary progressive form (1/20; 5%) were rare. HVFD were the presenting symptom of multiple sclerosis in seven patients (35%). The recovery was complete in 12/20 patients (60%), and the median time to recovery was 10 weeks (2-13 weeks). An incomplete recovery was found in 5/20 subjects (25%) and no recovery occurred in 3/20 subjects (15%). Magnetic resonance imaging disclosed a definite lesion explaining the HVFD in 7/11 patients: five within the optic radiations (71.4%), one within the optic tract (14.3%) and one within the lateral geniculate nucleus (14.3%). Our results were comparable to those compiled from our literature search (29 publications, totalling 70 cases). A recurrent episode of HVFD occurred in three patients (15%). OCT was performed in 10/20 patients. Retinal ganglion cell layer thickness was assessed and revealed a homonymous thinning in three patients, diffuse unilateral or bilateral thinning (resulting from previous episodes of optic neuritis) in six patients, and normal retinal ganglion cell layer thickness in one patient.

CONCLUSION

HVFD in multiple sclerosis are found mostly in young patients with relapsing-remitting multiple sclerosis, which is consistent with the epidemiology of multiple sclerosis. HVFD can be the first manifestation of multiple sclerosis and have a relatively good prognosis. Like optic neuritis, HVFD can recur. The incidence of HVFD in multiple sclerosis is unknown, as it is probably underdiagnosed. Systematic automated static perimetry and OCT could help to determine the true incidence of HVFD in multiple sclerosis.

References

  1. Balcer LJ, Miller DH, Reingold SC, Cohen JA. Vision and vision-related outcome measures in multiple sclerosis. Brain. 2015;138(1):11–27. doi:.https://doi.org/10.1093/brain/awu335
  2. Burton EV, Greenberg BM, Frohman EM. Optic neuritis: A mechanistic view. Pathophysiology. 2011;18(1):81–92. doi:.https://doi.org/10.1016/j.pathophys.2010.04.009
  3. McDonald WI, Barnes D. The ocular manifestations of multiple sclerosis. 1. Abnormalities of the afferent visual system. J Neurol Neurosurg Psychiatry. 1992;55(9):747–52. doi:.https://doi.org/10.1136/jnnp.55.9.747
  4. Bjerrum J. Et tilfaelde af hemianopsia partialis. Nord Ophtalm Tskr. 1890;3:71.
  5. Boldt HA, Haerer AF, Tourtellotte WW, Henderson JW, Dejong RM. Retrochiasmal visual field defects from multiple sclerosis. Arch Neurol. 1963;8(5):565–75. doi:.https://doi.org/10.1001/archneur.1963.00460050115013
  6. Beck RW, Schatz NJ, Savino J. Involvement of the optic chiasm, optic tract and geniculo-calcarine visual system in multiple sclerosis. Bull Soc Belge Ophtalmol. 1983;208(Pt 1):159–91.
  7. Plant GT, Kermode AG, Turano G, Moseley IF, Miller DH, MacManus DG, et al. Symptomatic retrochiasmal lesions in multiple sclerosis: clinical features, visual evoked potentials, and magnetic resonance imaging. Neurology. 1992;42(1):68–76. doi:.https://doi.org/10.1212/WNL.42.1.68
  8. Ormerod IEC, Miller DH, McDonald WI, du Boulay EPGH, Rudge P, Kendall BE, et al. The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain. 1987;110(6):1579–616. doi:.https://doi.org/10.1093/brain/110.6.1579
  9. Lehoczky T. Pathologic changes in the optic system in disseminated sclerosis. Acta Morphol Acad Sci Hung. 1954;4(3):395–408.
  10. Castro SM, Damasceno A, Damasceno BP, Vasconcellos JP, Reis F, Iyeyasu JN, et al. Visual pathway abnormalities were found in most multiple sclerosis patients despite history of previous optic neuritis. Arq Neuropsiquiatr. 2013;71(7):437–41. doi:.https://doi.org/10.1590/0004-282X20130058
  11. Hawkins K, Behrens MM. Homonymous hemianopia in multiple sclerosis. With report of bilateral case. Br J Ophthalmol. 1975;59(6):334–7. doi:.https://doi.org/10.1136/bjo.59.6.334
  12. Sisto D, Trojano M, Vetrugno M, Trabucco T, Iliceto G, Sborgia C. Subclinical visual involvement in multiple sclerosis: a study by MRI, VEPs, frequency-doubling perimetry, standard perimetry, and contrast sensitivity. Invest Ophthalmol Vis Sci. 2005;46(4):1264–8. doi:.https://doi.org/10.1167/iovs.03-1213
  13. Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology. 2006;113(2):324–32. doi:.https://doi.org/10.1016/j.ophtha.2005.10.040
  14. Gabilondo I, Sepúlveda M, Ortiz-Perez S, Fraga-Pumar E, Martínez-Lapiscina EH, Llufriu S, et al. Retrograde retinal damage after acute optic tract lesion in MS. J Neurol Neurosurg Psychiatry. 2013;84(7):824–6. doi:.https://doi.org/10.1136/jnnp-2012-304854
  15. Van Buren JM. Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry. 1963;26(5):402–9. doi:.https://doi.org/10.1136/jnnp.26.5.402
  16. Reich DS, Smith SA, Gordon-Lipkin EM, Ozturk A, Caffo BS, Balcer LJ, et al. Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol. 2009;66(8):998–1006. doi:.https://doi.org/10.1001/archneurol.2009.107
  17. Rocca MA, Mesaros S, Preziosa P, Pagani E, Stosic-Opincal T, Dujmovic-Basuroski I, et al. Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. Mult Scler. 2013;19(12):1610–7. doi:.https://doi.org/10.1177/1352458513485146
  18. Meier PG, Maeder P, Kardon RH, Borruat FX. Homonymous Ganglion Cell Layer Thinning After Isolated Occipital Lesion: Macular OCT Demonstrates Transsynaptic Retrograde Retinal Degeneration. J Neuroophthalmol. 2015;35(2):112–6.
  19. Mitchell JR, Oliveira C, Tsiouris AJ, Dinkin MJ. Corresponding Ganglion Cell Atrophy in Patients With Postgeniculate Homonymous Visual Field Loss. J Neuroophthalmol. 2015;35(4):353–9. doi:.https://doi.org/10.1097/WNO.0000000000000268
  20. Meier P, Maeder P, Borruat FX. Darstellung von transsynaptischer retrograder Degeneration bei homonymem RGCL-Verlust mittels OCT [Transsynaptic Retrograde Degeneration: Clinical Evidence with Homonymous RGCL Loss on OCT]. Klin Monatsbl Augenheilkd. 2016;233(4):396–8. doi:.https://doi.org/10.1055/s-0041-111535
  21. Holladay JT. Proper method for calculating average visual acuity. J Refract Surg. 1997;13(4):388–91.
  22. Kawasaki A, Borruat FX. Photophobia associated with a demyelinating lesion of the retrochiasmal visual pathway. Am J Ophthalmol. 2006;142(5):854–6. doi:.https://doi.org/10.1016/j.ajo.2006.05.026
  23. Ronne H. Vorkommen enies hemianopischen zentralscotomsb. disseminierte sclerose. Klin Mbl Augenheilkd. 1912;14:446.
  24. Bjerrum J. Nord ophtal. Tidjskr. 1912;3:71.
  25. Wilbrand H, Saenger A. Die Erkrankungen des Opticusstammes. In Die Neurologie des Auges. Wiesbaden: J. F. Bergmann; 1913;5.
  26. Ronne H. Vorkommen enies hemianopischen zentralscotomsb, Disseminierte sclerose. Klin Mbl Augenheilkd. 1915;55:68.
  27. Bielschowsky A. Klin Mbl Augenheilkd. 1933;90:542.
  28. Traquair HM. An introduction to clinical perimetry. 4th edition. London: Kimpton; 1942 pp. 259–60.
  29. Malbran JL, Sitler R, Insousti T. Homonymous hemianopic paracentral scotoma. Arch Oftalmol B Aires. 1952;27:193.
  30. Chamlin M, Davidoff LM. Homonymous hemianopia in multiple sclerosis. Neurology. 1954;4(6):429–37. doi:.https://doi.org/10.1212/WNL.4.6.429
  31. François J, Verriest G. La névrite rétro-chiasmatique de la sclérose-enplaques[Retrochiasmatic neuritis in multiple sclerosis]. Ann Ocul (Paris). 1957;190(5):305–15.
  32. Vedel-Jensen N. Optic tract neuritis in multiple sclerosis. Acta Ophthalmol (Copenh). 1959;37(5):537–45. doi:.https://doi.org/10.1111/j.1755-3768.1959.tb03466.x
  33. Beck RW, Savino PJ, Schatz NJ, Smith CH, Sergott RC. Plaque causing homonymous hemianopsia in multiple sclerosis identified by computed tomography. Am J Ophthalmol. 1982;94(2):229–34. doi:.https://doi.org/10.1016/0002-9394(82)90080-0
  34. Rosenblatt MA, Behrens MM, Zweifach PH, Forman S, Odel JG, Duncan CM, et al. Magnetic resonance imaging of optic tract involvement in multiple sclerosis. Am J Ophthalmol. 1987;104(1):74–9. doi:.https://doi.org/10.1016/0002-9394(87)90297-2
  35. Slavin ML. Acute homonymous field loss: really a diagnostic dilemma. Surv Ophthalmol. 1990;34(5):399–407. doi:.https://doi.org/10.1016/0039-6257(90)90117-E
  36. Vighetto A, Grochowicki M, Aimard G. Altitudinal Hemianopia in Multiple Sclerosis. Neuro-Ophthalmology. 1991;11(1):25–7. doi:.https://doi.org/10.3109/01658109109009638
  37. Frederiksen JL, Larsson HB, Nordenbo AM, Seedorff HH. Plaques causing hemianopsia or quadrantanopsia in multiple sclerosis identified by MRI and VEP. Acta Ophthalmol (Copenh). 1991;69(2):169–77. doi:.https://doi.org/10.1111/j.1755-3768.1991.tb02707.x
  38. Sanchez-Dalmau B, Goñi FJ, Guarro M, Roig C, Duch-Bordas F. Bilateral homonymous visual field defects as initial manifestation of multiple sclerosis. Br J Ophthalmol. 1991;75(3):185–7. doi:.https://doi.org/10.1136/bjo.75.3.185
  39. Waldvogel D, Sturzenegger M, Ozdoba C, Schroth G. Hemiparesis and homonymous hemianopia as the presenting sign of multiple sclerosis. Neuro-Ophthalmology. 1991;11:25–7.
  40. Borruat FX, Siatkowski RM, Schatz NJ, Glaser JS. Congruous quadrantanopia and optic radiation lesion. Neurology. 1993;43(7):1430–2. doi:.https://doi.org/10.1212/WNL.43.7.1430
  41. Cesareo M, Pozzilli C, Ristori G, Roscioni AM, Missiroli A. Crossed quadrant homonymous hemianopsia in a case of multiple sclerosis. Clin Neurol Neurosurg. 1995;97(4):324–7. doi:.https://doi.org/10.1016/0303-8467(95)00053-M
  42. Dogulu CF, Kansu T, Karabudak R. Alexia without agraphia in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1996;61(5):528. doi:.https://doi.org/10.1136/jnnp.61.5.528
  43. Gündüz K, Cansu K, Bulduklar S, Saatçi I. Homonymous hemianopsia as the initial manifestation of multiple sclerosis. Ophthalmologica. 1998;212(3):215–20. doi:.https://doi.org/10.1159/000027283
  44. Mao-Draayer Y, Panitch H. Alexia without agraphia in multiple sclerosis: case report with magnetic resonance imaging localization. Mult Scler. 2004;10(6):705–7. doi:.https://doi.org/10.1191/1352458504ms1075cr
  45. Murai H, Kiyosawa M, Suzuki Y, Mizoguchi S, Ishii K, Ishikawa K, et al. A case of multiple sclerosis with homonymous hemianopia examined by positron emission tomography. Jpn J Ophthalmol. 2004;48(6):591–3. doi:.https://doi.org/10.1007/s10384-004-0128-1
  46. Law SW, Lee AW, Chen CS. Multiple sclerosis presenting with homonymous hemianopia. Aust Fam Physician. 2009;38(10):795–6.
  47. Hornabrook RS, Miller DH, Newton MR, MacManus DG, du Boulay GH, Halliday AM, et al. Frequent involvement of the optic radiation in patients with acute isolated optic neuritis. Neurology. 1992;42(1):77–9. doi:.https://doi.org/10.1212/WNL.42.1.77
  48. Sherif M, Bergin C, Borruat FX. Wiederherstellung der normalen Sehkraft nach Neuritis nervi optici bei Patienten mit multipler Sklerose trotz signifikantem Verlust von retinalen Ganglienzellen [Normal visual recovery after optic neuritis despite significant loss of retinal ganglion cells in patients with multiple sclerosis]. Klin Monatsbl Augenheilkd. 2019;236(4):425–8. doi:.https://doi.org/10.1055/a-0853-1721
  49. Mühlemann F, Grabe H, Fok A, Wagner F, Brügger D, Sheldon CA, et al. Homonymous hemiatrophy of ganglion cell layer from retrochiasmal lesions in the visual pathway. Neurology. 2020;94(3):e323–9. doi:.https://doi.org/10.1212/WNL.0000000000008738