Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 150 No. 3536 (2020)

Understanding the mechanisms of placebo and nocebo effects

DOI
https://doi.org/10.4414/smw.2020.20340
Cite this as:
Swiss Med Wkly. 2020;150:w20340
Published
01.09.2020

Summary

Although placebos have long been considered a nuisance in clinical research, over recent years they have become an active and productive field of research. Indeed, the placebo effect represents an elegant model to understand how the brain works. It is worth knowing that there is not a single but many placebo effects, with different mechanisms across different systems, medical conditions and therapeutic interventions. For example, brain mechanisms of expectation, anxiety and reward are all involved, as well as a variety of learning phenomena. There is also some experimental evidence of different genetic variants in placebo responsiveness. Pain and Parkinson’s disease represent the most productive models to better understand the neurobiology of the placebo effect. In these medical conditions the neural networks involved have indeed been identified: that is, opioid, cannabinoid, cholecystokinin, cyclooxygenase, and dopamine modulatory networks in pain; and part of the basal ganglia circuitry in Parkinson’s disease. Overall, there is today compelling evidence that placebos and drugs share common biochemical pathways and activate the same receptor pathways, which suggests possible interference between social stimuli and therapeutic rituals on one hand and pharmacological agents on the other. The same holds true for the nocebo effect, the opposite phenomenon of placebo. The assessment of patients’ expectations should become the rule in clinical trials in order to allow us a better interpretation of therapeutic outcomes when comparing placebo and active treatment groups. Administering drugs covertly is another way to identify the placebo psychobiological component without the administration of any placebo, and this provides important information on the role of patient’s expectations in the therapeutic outcome. A further in-depth analysis of placebo and nocebo phenomena will certainly provide important information in the near future for a better understanding of human biology, medicine and society.

References

  1. Benedetti F. Placebo effects: from the neurobiological paradigm to translational implications. Neuron. 2014;84(3):623–37. doi:.https://doi.org/10.1016/j.neuron.2014.10.023
  2. Colloca L, Barsky AJ. Placebo and nocebo effects. N Engl J Med. 2020;382(6):554–61. doi:.https://doi.org/10.1056/NEJMra1907805
  3. Finniss DG, Kaptchuk TJ, Miller F, Benedetti F. Biological, clinical, and ethical advances of placebo effects. Lancet. 2010;375(9715):686–95. doi:.https://doi.org/10.1016/S0140-6736(09)61706-2
  4. Shaibani A, Frisaldi E, Benedetti F. Placebo response in pain, fatigue, and performance: Possible implications for neuromuscular disorders. Muscle Nerve. 2017;56(3):358–67. doi:.https://doi.org/10.1002/mus.25635
  5. Benedetti F, Carlino E, Piedimonte A. Increasing uncertainty in CNS clinical trials: the role of placebo, nocebo, and Hawthorne effects. Lancet Neurol. 2016;15(7):736–47. doi:.https://doi.org/10.1016/S1474-4422(16)00066-1
  6. Benedetti F. Placebo and the new physiology of the doctor-patient relationship. Physiol Rev. 2013;93(3):1207–46. doi:.https://doi.org/10.1152/physrev.00043.2012
  7. Benedetti F. Placebo effects, 3rd ed. Oxford: Oxford University Press, 2020.
  8. Evers AWM, Colloca L, Blease C, Annoni M, Atlas LY, Benedetti F, et al. Implications of placebo and nocebo effects for clinical practice: expert consensus. Psychother Psychosom. 2018;87(4):204–10. doi:.https://doi.org/10.1159/000490354
  9. Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia-- imaging a shared neuronal network. Science. 2002;295(5560):1737–40. doi:.https://doi.org/10.1126/science.1067176
  10. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303(5661):1162–7. doi:.https://doi.org/10.1126/science.1093065
  11. Zunhammer M, Bingel U, Wager TD ; Placebo Imaging Consortium. Placebo Effects on the Neurologic Pain Signature: A Meta-analysis of Individual Participant Functional Magnetic Resonance Imaging Data. JAMA Neurol. 2018;75(11):1321–30. doi:.https://doi.org/10.1001/jamaneurol.2018.2017
  12. Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci. 1999;19(1):484–94. doi:.https://doi.org/10.1523/JNEUROSCI.19-01-00484.1999
  13. Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, et al. Placebo effects mediated by endogenous opioid activity on µ-opioid receptors. J Neurosci. 2005;25(34):7754–62. doi:.https://doi.org/10.1523/JNEUROSCI.0439-05.2005
  14. Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009;63(4):533–43. doi:.https://doi.org/10.1016/j.neuron.2009.07.014
  15. Benedetti F, Amanzio M, Rosato R, Blanchard C. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Nat Med. 2011;17(10):1228–30. doi:.https://doi.org/10.1038/nm.2435
  16. Benedetti F, Durando J, Vighetti S. Nocebo and placebo modulation of hypobaric hypoxia headache involves the cyclooxygenase-prostaglandins pathway. Pain. 2014;155(5):921–8. doi:.https://doi.org/10.1016/j.pain.2014.01.016
  17. Benedetti F, Dogue S. Different placebos, different mechanisms, different outcomes: lessons for clinical trials. PLoS One. 2015;10(11):e0140967. doi:.https://doi.org/10.1371/journal.pone.0140967
  18. Benedetti F, Durando J, Giudetti L, Pampallona A, Vighetti S. High-altitude headache: the effects of real vs sham oxygen administration. Pain. 2015;156(11):2326–36. doi:.https://doi.org/10.1097/j.pain.0000000000000288
  19. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron. 2007;55(2):325–36. doi:.https://doi.org/10.1016/j.neuron.2007.06.028
  20. Jarcho JM, Feier NA, Labus JS, Naliboff B, Smith SR, Hong JY, et al. Placebo analgesia: Self-report measures and preliminary evidence of cortical dopamine release associated with placebo response. Neuroimage Clin. 2016;10:107–14. doi:.https://doi.org/10.1016/j.nicl.2015.11.009
  21. de la Fuente-Fernández R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science. 2001;293(5532):1164–6. doi:.https://doi.org/10.1126/science.1060937
  22. de la Fuente-Fernández R, Phillips AG, Zamburlini M, Sossi V, Calne DB, Ruth TJ, et al. Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res. 2002;136(2):359–63. doi:.https://doi.org/10.1016/S0166-4328(02)00130-4
  23. Benedetti F, Colloca L, Torre E, Lanotte M, Melcarne A, Pesare M, et al. Placebo-responsive Parkinson patients show decreased activity in single neurons of subthalamic nucleus. Nat Neurosci. 2004;7(6):587–8. doi:.https://doi.org/10.1038/nn1250
  24. Benedetti F, Lanotte M, Colloca L, Ducati A, Zibetti M, Lopiano L. Electrophysiological properties of thalamic, subthalamic and nigral neurons during the anti-parkinsonian placebo response. J Physiol. 2009;587(15):3869–83. doi:.https://doi.org/10.1113/jphysiol.2009.169425
  25. Frisaldi E, Carlino E, Lanotte M, Lopiano L, Benedetti F. Characterization of the thalamic-subthalamic circuit involved in the placebo response through single-neuron recording in Parkinson patients. Cortex. 2014;60:3–9. doi:.https://doi.org/10.1016/j.cortex.2013.12.003
  26. Benedetti F, Frisaldi E, Carlino E, Giudetti L, Pampallona A, Zibetti M, et al. Teaching neurons to respond to placebos. J Physiol. 2016;594(19):5647–60. doi:.https://doi.org/10.1113/JP271322
  27. Frisaldi E, Carlino E, Zibetti M, Barbiani D, Dematteis F, Lanotte M, et al. The placebo effect on bradykinesia in Parkinson’s disease with and without prior drug conditioning. Mov Disord. 2017;32(10):1474–8. doi:.https://doi.org/10.1002/mds.27142
  28. Leuchter AF, Cook IA, Witte EA, Morgan M, Abrams M. Changes in brain function of depressed subjects during treatment with placebo. Am J Psychiatry. 2002;159(1):122–9. doi:.https://doi.org/10.1176/appi.ajp.159.1.122
  29. Leuchter AF, Morgan M, Cook IA, Dunkin J, Abrams M, Witte E. Pretreatment neurophysiological and clinical characteristics of placebo responders in treatment trials for major depression. Psychopharmacology (Berl). 2004;177(1-2):15–22. doi:.https://doi.org/10.1007/s00213-004-1919-2
  30. Mayberg HS, Silva JA, Brannan SK, Tekell JL, Mahurin RK, McGinnis S, et al. The functional neuroanatomy of the placebo effect. Am J Psychiatry. 2002;159(5):728–37. doi:.https://doi.org/10.1176/appi.ajp.159.5.728
  31. Faria V, Appel L, Åhs F, Linnman C, Pissiota A, Frans Ö, et al. Amygdala subregions tied to SSRI and placebo response in patients with social anxiety disorder. Neuropsychopharmacology. 2012;37(10):2222–32. doi:.https://doi.org/10.1038/npp.2012.72
  32. Faria V, Åhs F, Appel L, Linnman C, Bani M, Bettica P, et al. Amygdala-frontal couplings characterizing SSRI and placebo response in social anxiety disorder. Int J Neuropsychopharmacol. 2014;17(8):1149–57. doi:.https://doi.org/10.1017/S1461145714000352
  33. Wendt L, Albring A, Schedlowski M. Learned placebo responses in neuroendocrine and immune functions. Handb Exp Pharmacol. 2014;225:159–81. doi:.https://doi.org/10.1007/978-3-662-44519-8_10
  34. Tekampe J, van Middendorp H, Meeuwis SH, van Leusden JW, Pacheco-López G, Hermus AR, et al. Conditioning immune and endocrine parameters in humans: a systematic review. Psychother Psychosom. 2017;86(2):99–107. doi:.https://doi.org/10.1159/000449470
  35. Tekampe J, van Middendorp H, Sweep FCGJ, Roerink SHPP, Hermus ARMM, Evers AWM. Human pharmacological conditioning of the immune and endocrine system: challenges and opportunities. Int Rev Neurobiol. 2018;138:61–80. doi:.https://doi.org/10.1016/bs.irn.2018.01.002
  36. Hadamitzky M, Sondermann W, Benson S, Schedlowski M. Placebo effects in the immune system. Int Rev Neurobiol. 2018;138:39–59. doi:.https://doi.org/10.1016/bs.irn.2018.01.001
  37. Goebel MU, Trebst AE, Steiner J, Xie YF, Exton MS, Frede S, et al. Behavioral conditioning of immunosuppression is possible in humans. FASEB J. 2002;16(14):1869–73. doi:.https://doi.org/10.1096/fj.02-0389com
  38. Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S, Rainero I. Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J Neurosci. 2003;23(10):4315–23. doi:.https://doi.org/10.1523/JNEUROSCI.23-10-04315.2003
  39. Hall KT, Loscalzo J, Kaptchuk TJ. Genetics and the placebo effect: the placebome. Trends Mol Med. 2015;21(5):285–94. doi:.https://doi.org/10.1016/j.molmed.2015.02.009
  40. Hall KT, Loscalzo J, Kaptchuk T. Pharmacogenomics and the placebo response. ACS Chem Neurosci. 2018;9(4):633–5. doi:.https://doi.org/10.1021/acschemneuro.8b00078
  41. Colloca L, Wang Y, Martinez PE, Chang YC, Ryan KA, Hodgkinson C, et al. OPRM1 rs1799971, COMT rs4680, and FAAH rs324420 genes interact with placebo procedures to induce hypoalgesia. Pain. 2019;160(8):1824–34. doi:.https://doi.org/10.1097/j.pain.0000000000001578
  42. Furmark T, Appel L, Henningsson S, Åhs F, Faria V, Linnman C, et al. A link between serotonin-related gene polymorphisms, amygdala activity, and placebo-induced relief from social anxiety. J Neurosci. 2008;28(49):13066–74. doi:.https://doi.org/10.1523/JNEUROSCI.2534-08.2008
  43. Leuchter AF, McCracken JT, Hunter AM, Cook IA, Alpert JE. Monoamine oxidase a and catechol-o-methyltransferase functional polymorphisms and the placebo response in major depressive disorder. J Clin Psychopharmacol. 2009;29(4):372–7. doi:.https://doi.org/10.1097/JCP.0b013e3181ac4aaf
  44. Hall KT, Lembo AJ, Kirsch I, Ziogas DC, Douaiher J, Jensen KB, et al. Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome. PLoS One. 2012;7(10):e48135. doi:.https://doi.org/10.1371/journal.pone.0048135
  45. Benedetti F, Frisaldi E, Barbiani D, Camerone E, Shaibani A. Nocebo and the contribution of psychosocial factors to the generation of pain. J Neural Transm (Vienna). 2020;127(4):687–96. doi:.https://doi.org/10.1007/s00702-019-02104-x
  46. Benedetti F, Amanzio M, Casadio C, Oliaro A, Maggi G. Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain. 1997;71(2):135–40. doi:.https://doi.org/10.1016/S0304-3959(97)03346-0
  47. Benedetti F, Amanzio M, Vighetti S, Asteggiano G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosci. 2006;26(46):12014–22. doi:.https://doi.org/10.1523/JNEUROSCI.2947-06.2006
  48. Amanzio M, Corazzini LL, Vase L, Benedetti F. A systematic review of adverse events in placebo groups of anti-migraine clinical trials. Pain. 2009;146(3):261–9. doi:.https://doi.org/10.1016/j.pain.2009.07.010
  49. Rief W, Nestoriuc Y, von Lilienfeld-Toal A, Dogan I, Schreiber F, Hofmann SG, et al. Differences in adverse effect reporting in placebo groups in SSRI and tricyclic antidepressant trials: a systematic review and meta-analysis. Drug Saf. 2009;32(11):1041–56. doi:.https://doi.org/10.2165/11316580-000000000-00000
  50. Frisaldi E, Shaibani A, Benedetti F. Why we should assess patients’ expectations in clinical trials. Pain Ther. 2017;6(1):107–10. doi:.https://doi.org/10.1007/s40122-017-0071-8
  51. Colloca L, Lopiano L, Lanotte M, Benedetti F. Overt versus covert treatment for pain, anxiety, and Parkinson’s disease. Lancet Neurol. 2004;3(11):679–84. doi:.https://doi.org/10.1016/S1474-4422(04)00908-1
  52. Benedetti F, Carlino E, Pollo A. Hidden administration of drugs. Clin Pharmacol Ther. 2011;90(5):651–61. doi:.https://doi.org/10.1038/clpt.2011.206
  53. Amanzio M, Pollo A, Maggi G, Benedetti F. Response variability to analgesics: a role for non-specific activation of endogenous opioids. Pain. 2001;90(3):205–15. doi:.https://doi.org/10.1016/S0304-3959(00)00486-3
  54. Bingel U, Wanigasekera V, Wiech K, Ni Mhuircheartaigh R, Lee MC, Ploner M, et al. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci Transl Med. 2011;3(70):70ra14. doi:.https://doi.org/10.1126/scitranslmed.3001244
  55. Enck P, Bingel U, Schedlowski M, Rief W. The placebo response in medicine: minimize, maximize or personalize? Nat Rev Drug Discov. 2013;12(3):191–204. doi:.https://doi.org/10.1038/nrd3923
  56. Bingel U ; Placebo Competence Team. Avoiding nocebo effects to optimize treatment outcome. JAMA. 2014;312(7):693–4. doi:.https://doi.org/10.1001/jama.2014.8342
  57. Colloca L, Howick J. Placebos without deception: outcomes, mechanisms, and ethics. Int Rev Neurobiol. 2018;138:219–40. doi:.https://doi.org/10.1016/bs.irn.2018.01.005
  58. Kaptchuk TJ. Open-label placebo: reflections on a research agenda. Perspect Biol Med. 2018;61(3):311–34. doi:.https://doi.org/10.1353/pbm.2018.0045
  59. Guevarra DA, Moser JS, Wager TD, Kross E. Placebos without deception reduce self-report and neural measures of emotional distress. Nat Commun. 2020;11(1):3785. doi:.https://doi.org/10.1038/s41467-020-17654-y
  60. Benedetti F, Arduino C, Costa S, Vighetti S, Tarenzi L, Rainero I, et al. Loss of expectation-related mechanisms in Alzheimer’s disease makes analgesic therapies less effective. Pain. 2006;121(1):133–44. doi:.https://doi.org/10.1016/j.pain.2005.12.016
  61. Stein N, Sprenger C, Scholz J, Wiech K, Bingel U. White matter integrity of the descending pain modulatory system is associated with interindividual differences in placebo analgesia. Pain. 2012;153(11):2210–7. doi:.https://doi.org/10.1016/j.pain.2012.07.010
  62. Krummenacher P, Candia V, Folkers G, Schedlowski M, Schönbächler G. Prefrontal cortex modulates placebo analgesia. Pain. 2010;148(3):368–74. doi:.https://doi.org/10.1016/j.pain.2009.09.033