Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 150 No. 3334 (2020)

Mortality prediction in acute heart failure: scores or biomarkers?

DOI
https://doi.org/10.4414/smw.2020.20320
Cite this as:
Swiss Med Wkly. 2020;150:w20320
Published
13.08.2020

Summary

Acute heart failure (AHF) is a complex and heterogeneous syndrome not only associated with a concerning rise in incidence, but also with still unacceptably high rates of mortality and morbidity. As this dismal outcome is at least in part due to a mismatch between the severity of AHF and the intensity of its management, both in-hospital and immediately after discharge, early and accurate risk prediction could contribute to more effective, risk-adjusted management.

Biomarkers are noninvasive and highly reproducible quantitative tools that have improved the understanding of AHF pathophysiology. They can help guide the intensity of AHF management. In addition, using a statistical model to estimate risk from a combination of several predictor variables such as vital signs or demographics has gained more and more attention over recent years. In this context, the aim of a statistical model, which gives a so-called risk score, is to help clinicians to make more standardised decisions.

This review highlights recent advances and remaining uncertainties regarding risk stratification in AHF by characterising and comparing the potential of biomarkers and risk scores.

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135(10):e146–603. doi:.https://doi.org/10.1161/CIR.0000000000000485
  2. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79. doi:.https://doi.org/10.1161/CIRCULATIONAHA.114.010637
  3. Jackson SL, Tong X, King RJ, Loustalot F, Hong Y, Ritchey MD. National Burden of Heart Failure Events in the United States, 2006 to 2014. Circ Heart Fail. 2018;11(12):e004873. doi:.https://doi.org/10.1161/CIRCHEARTFAILURE.117.004873
  4. Mueller C, Christ M, Cowie M, Cullen L, Maisel AS, Masip J, et al.; Acute Heart Failure Study Group of the ESC Acute Cardiovascular Care Association. European Society of Cardiology-Acute Cardiovascular Care Association Position paper on acute heart failure: A call for interdisciplinary care. Eur Heart J Acute Cardiovasc Care. 2017;6(1):81–6. doi:.https://doi.org/10.1177/2048872615593279
  5. Mebazaa A, Yilmaz MB, Levy P, Ponikowski P, Peacock WF, Laribi S, et al. Recommendations on pre-hospital and early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine--short version. Eur Heart J. 2015;36(30):1958–66. doi:.https://doi.org/10.1093/eurheartj/ehv066
  6. Mueller C, Bally K, Buser M, Flammer AJ, Gaspoz J-M, Mach F, et al. Roadmap for the treatment of heart failure patients after hospital discharge: an interdisciplinary consensus paper. Swiss Med Wkly. 2020;150:w20159. doi:.https://doi.org/10.4414/smw.2020.20159
  7. Miró Ò, Rossello X, Gil V, Martín-Sánchez FJ, Llorens P, Herrero-Puente P, et al.; ICA-SEMES Research Group. Predicting 30-Day Mortality for Patients With Acute Heart Failure in the Emergency Department: A Cohort Study. Ann Intern Med. 2017;167(10):698–705. doi:.https://doi.org/10.7326/M16-2726
  8. Wussler D, Kozhuharov N, Sabti Z, Walter J, Strebel I, Scholl L, et al. External Validation of the MEESSI Acute Heart Failure Risk Score: A Cohort Study. Ann Intern Med. 2019;170(4):248–56. doi:.https://doi.org/10.7326/M18-1967
  9. Braunwald E. Another step toward personalized care of patients with heart failure. Eur J Heart Fail. 2015;17(10):988–90. doi:.https://doi.org/10.1002/ejhf.348
  10. Bishu K, Deswal A, Chen HH, LeWinter MM, Lewis GD, Semigran MJ, et al. Biomarkers in acutely decompensated heart failure with preserved or reduced ejection fraction. Am Heart J. 2012;164(5):763–770.e3. doi:.https://doi.org/10.1016/j.ahj.2012.08.014
  11. Tromp J, Khan MAF, Klip IT, Meyer S, de Boer RA, Jaarsma T, et al. Biomarker Profiles in Heart Failure Patients With Preserved and Reduced Ejection Fraction. J Am Heart Assoc. 2017;6(4):e003989. doi:.https://doi.org/10.1161/JAHA.116.003989
  12. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al.; ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200. doi:.https://doi.org/10.1093/eurheartj/ehw128
  13. Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N, et al.; Heart Failure Association of the European Society of Cardiology. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21(6):715–31. doi:.https://doi.org/10.1002/ejhf.1494
  14. Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M ; ADHERE Scientific Advisory Committee and Investigators. Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J Am Coll Cardiol. 2007;49(19):1943–50. doi:.https://doi.org/10.1016/j.jacc.2007.02.037
  15. Cheng V, Kazanagra R, Garcia A, Lenert L, Krishnaswamy P, Gardetto N, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol. 2001;37(2):386–91. doi:.https://doi.org/10.1016/S0735-1097(00)01157-8
  16. Lassus J, Gayat E, Mueller C, Peacock WF, Spinar J, Harjola V-P, et al.; GREAT-Network. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int J Cardiol. 2013;168(3):2186–94. doi:.https://doi.org/10.1016/j.ijcard.2013.01.228
  17. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, et al. Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail. 2014;2(5):440–6. doi:.https://doi.org/10.1016/j.jchf.2014.04.008
  18. Braunwald E. Heart failure. JACC Heart Fail. 2013;1(1):1–20. doi:.https://doi.org/10.1016/j.jchf.2012.10.002
  19. Steyerberg EW, Moons KGM, van der Windt DA, Hayden JA, Perel P, Schroter S, et al.; PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381. doi:.https://doi.org/10.1371/journal.pmed.1001381
  20. Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart. 2012;98(9):683–90. doi:.https://doi.org/10.1136/heartjnl-2011-301246
  21. Moons KGM, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691–8. doi:.https://doi.org/10.1136/heartjnl-2011-301247
  22. Lee DS, Stitt A, Austin PC, Stukel TA, Schull MJ, Chong A, et al. Prediction of heart failure mortality in emergent care: a cohort study. Ann Intern Med. 2012;156(11):767–75, W-261, W-262. doi:.https://doi.org/10.7326/0003-4819-156-11-201206050-00003
  23. Stiell IG, Clement CM, Brison RJ, Rowe BH, Borgundvaag B, Aaron SD, et al. A risk scoring system to identify emergency department patients with heart failure at high risk for serious adverse events. Acad Emerg Med. 2013;20(1):17–26. doi:.https://doi.org/10.1111/acem.12056
  24. Collins SP, Jenkins CA, Harrell FE, Jr, Liu D, Miller KF, Lindsell CJ, et al. Identification of Emergency Department Patients With Acute Heart Failure at Low Risk for 30-Day Adverse Events: The STRATIFY Decision Tool. JACC Heart Fail. 2015;3(10):737–47. doi:.https://doi.org/10.1016/j.jchf.2015.05.007
  25. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115(8):949–52. doi:.https://doi.org/10.1161/CIRCULATIONAHA.106.683110
  26. Tang WHW, Francis GS, Morrow DA, Newby LK, Cannon CP, Jesse RL, et al.; National Academy of Clinical Biochemistry Laboratory Medicine. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: Clinical utilization of cardiac biomarker testing in heart failure. Circulation. 2007;116(5):e99–109.
  27. van Kimmenade RRJ, Januzzi JL, Jr. Emerging biomarkers in heart failure. Clin Chem. 2012;58(1):127–38. doi:.https://doi.org/10.1373/clinchem.2011.165720
  28. Nishikimi T, Saito Y, Kitamura K, Ishimitsu T, Eto T, Kangawa K, et al. Increased plasma levels of adrenomedullin in patients with heart failure. J Am Coll Cardiol. 1995;26(6):1424–31. doi:.https://doi.org/10.1016/0735-1097(95)00338-X
  29. Rehman SU, Mueller T, Januzzi JL, Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52(18):1458–65. doi:.https://doi.org/10.1016/j.jacc.2008.07.042
  30. Wettersten N, Horiuchi Y, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, et al. Short-term prognostic implications of serum and urine neutrophil gelatinase-associated lipocalin in acute heart failure: findings from the AKINESIS study. Eur J Heart Fail. 2020;22(2):251–63. doi:.https://doi.org/10.1002/ejhf.1642
  31. Murray PT, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, et al. Utility of Urine Neutrophil Gelatinase-Associated Lipocalin for Worsening Renal Function during Hospitalization for Acute Heart Failure: Primary Findings of the Urine N-gal Acute Kidney Injury N-gal Evaluation of Symptomatic Heart Failure Study (AKINESIS). J Card Fail. 2019;25(8):654–65. doi:.https://doi.org/10.1016/j.cardfail.2019.05.009
  32. Maisel AS, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, et al. Neutrophil Gelatinase-Associated Lipocalin for Acute Kidney Injury During Acute Heart Failure Hospitalizations: The AKINESIS Study. J Am Coll Cardiol. 2016;68(13):1420–31. doi:.https://doi.org/10.1016/j.jacc.2016.06.055
  33. Du W, Piek A, Schouten EM, van de Kolk CWA, Mueller C, Mebazaa A, et al. Plasma levels of heart failure biomarkers are primarily a reflection of extracardiac production. Theranostics. 2018;8(15):4155–69. doi:.https://doi.org/10.7150/thno.26055
  34. Kaye DM, Mariani JA, van Empel V, Maeder MT. Determinants and implications of elevated soluble ST2 levels in heart failure. Int J Cardiol. 2014;176(3):1242–3. doi:.https://doi.org/10.1016/j.ijcard.2014.07.206
  35. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008;358(20):2148–59. doi:.https://doi.org/10.1056/NEJMra0800239
  36. Zymliński R, Sokolski M, Biegus J, Siwołowski P, Nawrocka-Millward S, Sokolska JM, et al. Multi-organ dysfunction/injury on admission identifies acute heart failure patients at high risk of poor outcome. Eur J Heart Fail. 2019;21(6):744–50. doi:.https://doi.org/10.1002/ejhf.1378
  37. Kim HN, Januzzi JL, Jr. Natriuretic peptide testing in heart failure. Circulation. 2011;123(18):2015–9. doi:.https://doi.org/10.1161/CIRCULATIONAHA.110.979500
  38. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, et al.; Breathing Not Properly Multinational Study Investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347(3):161–7. doi:.https://doi.org/10.1056/NEJMoa020233
  39. Maeda K, Tsutamoto T, Wada A, Hisanaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J. 1998;135(5):825–32. doi:.https://doi.org/10.1016/S0002-8703(98)70041-9
  40. Drexler B, Heinisch C, Balmelli C, Lassus J, Siirilä-Waris K, Arenja N, et al. Quantifying cardiac hemodynamic stress and cardiomyocyte damage in ischemic and nonischemic acute heart failure. Circ Heart Fail. 2012;5(1):17–24. doi:.https://doi.org/10.1161/CIRCHEARTFAILURE.111.961243
  41. Mueller C, Scholer A, Laule-Kilian K, Martina B, Schindler C, Buser P, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med. 2004;350(7):647–54. doi:.https://doi.org/10.1056/NEJMoa031681
  42. McCullough PA, Nowak RM, McCord J, Hollander JE, Herrmann HC, Steg PG, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation. 2002;106(4):416–22. doi:.https://doi.org/10.1161/01.CIR.0000025242.79963.4C
  43. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–52. doi:.https://doi.org/10.1161/CIR.0b013e31829e8807
  44. Harrison A, Morrison LK, Krishnaswamy P, Kazanegra R, Clopton P, Dao Q, et al. B-type natriuretic peptide predicts future cardiac events in patients presenting to the emergency department with dyspnea. Ann Emerg Med. 2002;39(2):131–8. doi:.https://doi.org/10.1067/mem.2002.121483
  45. Zairis MN, Tsiaousis GZ, Georgilas AT, Makrygiannis SS, Adamopoulou EN, Handanis SM, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int J Cardiol. 2010;141(3):284–90. doi:.https://doi.org/10.1016/j.ijcard.2008.12.017
  46. Januzzi JL, Jr, Sakhuja R, O’donoghue M, Baggish AL, Anwaruddin S, Chae CU, et al. Utility of amino-terminal pro-brain natriuretic peptide testing for prediction of 1-year mortality in patients with dyspnea treated in the emergency department. Arch Intern Med. 2006;166(3):315–20. doi:.https://doi.org/10.1001/archinte.166.3.315
  47. van Kimmenade RRJ, Pinto YM, Bayes-Genis A, Lainchbury JG, Richards AM, Januzzi JL, Jr. Usefulness of intermediate amino-terminal pro-brain natriuretic peptide concentrations for diagnosis and prognosis of acute heart failure. Am J Cardiol. 2006;98(3):386–90. doi:.https://doi.org/10.1016/j.amjcard.2006.02.043
  48. Januzzi JL, van Kimmenade R, Lainchbury J, Bayes-Genis A, Ordonez-Llanos J, Santalo-Bel M, et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J. 2006;27(3):330–7. doi:.https://doi.org/10.1093/eurheartj/ehi631
  49. Dhaliwal AS, Deswal A, Pritchett A, Aguilar D, Kar B, Souchek J, et al. Reduction in BNP levels with treatment of decompensated heart failure and future clinical events. J Card Fail. 2009;15(4):293–9. doi:.https://doi.org/10.1016/j.cardfail.2008.11.007
  50. Kociol RD, Horton JR, Fonarow GC, Reyes EM, Shaw LK, O’Connor CM, et al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ Heart Fail. 2011;4(5):628–36. doi:.https://doi.org/10.1161/CIRCHEARTFAILURE.111.962290
  51. Bettencourt P, Azevedo A, Pimenta J, Friões F, Ferreira S, Ferreira A. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004;110(15):2168–74. doi:.https://doi.org/10.1161/01.CIR.0000144310.04433.BE
  52. O’Brien RJ, Squire IB, Demme B, Davies JE, Ng LL. Pre-discharge, but not admission, levels of NT-proBNP predict adverse prognosis following acute LVF. Eur J Heart Fail. 2003;5(4):499–506. doi:.https://doi.org/10.1016/S1388-9842(03)00098-9
  53. Noveanu M, Breidthardt T, Potocki M, Reichlin T, Twerenbold R, Uthoff H, et al. Direct comparison of serial B-type natriuretic peptide and NT-proBNP levels for prediction of short- and long-term outcome in acute decompensated heart failure. Crit Care. 2011;15(1):R1. doi:.https://doi.org/10.1186/cc9398
  54. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al.; PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. doi:.https://doi.org/10.1056/NEJMoa1409077
  55. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al.; Prospective comparison of ARNI with ARB on Management Of heart failUre with preserved ejectioN fracTion (PARAMOUNT) Investigators. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95. doi:.https://doi.org/10.1016/S0140-6736(12)61227-6
  56. Ibrahim NE, McCarthy CP, Shrestha S, Gaggin HK, Mukai R, Szymonifka J, et al. Effect of Neprilysin Inhibition on Various Natriuretic Peptide Assays. J Am Coll Cardiol. 2019;73(11):1273–84. doi:.https://doi.org/10.1016/j.jacc.2018.12.063
  57. Yandle TG, Richards AM, Nicholls MG, Cuneo R, Espiner EA, Livesey JH. Metabolic clearance rate and plasma half life of alpha-human atrial natriuretic peptide in man. Life Sci. 1986;38(20):1827–33. doi:.https://doi.org/10.1016/0024-3205(86)90137-2
  58. Maisel A, Mueller C, Nowak R, Peacock WF, Landsberg JW, Ponikowski P, et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2010;55(19):2062–76. doi:.https://doi.org/10.1016/j.jacc.2010.02.025
  59. Shah RV, Truong QA, Gaggin HK, Pfannkuche J, Hartmann O, Januzzi JL, Jr. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur Heart J. 2012;33(17):2197–205. doi:.https://doi.org/10.1093/eurheartj/ehs136
  60. Potocki M, Breidthardt T, Reichlin T, Hartwiger S, Morgenthaler NG, Bergmann A, et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure. J Intern Med. 2010;267(1):119–29. doi:.https://doi.org/10.1111/j.1365-2796.2009.02135.x
  61. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol. 2006;47(4):742–8. doi:.https://doi.org/10.1016/j.jacc.2005.11.030
  62. Maeder MT, Weber L, Ammann P, Buser M, Ehl NF, Gerhard M, et al. Relationship between B-type natriuretic peptide and invasive haemodynamics in patients with severe aortic valve stenosis. ESC Heart Fail. 2020;7(2):577–87. doi:.https://doi.org/10.1002/ehf2.12614
  63. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107(5):721–6. doi:.https://doi.org/10.1161/01.CIR.0000047274.66749.FE
  64. Januzzi JL, Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50(7):607–13. doi:.https://doi.org/10.1016/j.jacc.2007.05.014
  65. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail. 2008;14(9):732–8. doi:.https://doi.org/10.1016/j.cardfail.2008.06.415
  66. Breidthardt T, Balmelli C, Twerenbold R, Mosimann T, Espinola J, Haaf P, et al. Heart failure therapy-induced early ST2 changes may offer long-term therapy guidance. J Card Fail. 2013;19(12):821–8. doi:.https://doi.org/10.1016/j.cardfail.2013.11.003
  67. Manzano-Fernández S, Januzzi JL, Pastor-Pérez FJ, Bonaque-González JC, Boronat-Garcia M, Pascual-Figal DA, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122(3):158–66. doi:.https://doi.org/10.1159/000338800
  68. Aimo A, Vergaro G, Ripoli A, Bayes-Genis A, Pascual Figal DA, de Boer RA, et al. Meta-Analysis of Soluble Suppression of Tumorigenicity-2 and Prognosis in Acute Heart Failure. JACC Heart Fail. 2017;5(4):287–96. doi:.https://doi.org/10.1016/j.jchf.2016.12.016
  69. Maisel A, Xue Y, van Veldhuisen DJ, Voors AA, Jaarsma T, Pang PS, et al. Effect of spironolactone on 30-day death and heart failure rehospitalization (from the COACH Study). Am J Cardiol. 2014;114(5):737–42. doi:.https://doi.org/10.1016/j.amjcard.2014.05.062
  70. Morrow DA, Velazquez EJ, DeVore AD, Prescott MF, Duffy CI, Gurmu Y, et al. Cardiovascular biomarkers in patients with acute decompensated heart failure randomized to sacubitril-valsartan or enalapril in the PIONEER-HF trial. Eur Heart J. 2019;40(40):3345–52. doi:.https://doi.org/10.1093/eurheartj/ehz240
  71. Tsutamoto T, Sakai H, Ishikawa C, Fujii M, Tanaka T, Yamamoto T, et al. Direct comparison of transcardiac difference between brain natriuretic peptide (BNP) and N-terminal pro-BNP in patients with chronic heart failure. Eur J Heart Fail. 2007;9(6-7):667–73. doi:.https://doi.org/10.1016/j.ejheart.2007.01.003
  72. Maeder MT, Mariani JA, Kaye DM. Hemodynamic determinants of myocardial B-type natriuretic peptide release: relative contributions of systolic and diastolic wall stress. Hypertension. 2010;56(4):682–9. doi:.https://doi.org/10.1161/HYPERTENSIONAHA.110.156547
  73. Ago T, Sadoshima J. GDF15, a cardioprotective TGF-β superfamily protein. Circ Res. 2006;98(3):294–7. doi:.https://doi.org/10.1161/01.RES.0000207919.83894.9d
  74. Chan MMY, Santhanakrishnan R, Chong JPC, Chen Z, Tai BC, Liew OW, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18(1):81–8. doi:.https://doi.org/10.1002/ejhf.431
  75. Cotter G, Voors AA, Prescott MF, Felker GM, Filippatos G, Greenberg BH, et al. Growth differentiation factor 15 (GDF-15) in patients admitted for acute heart failure: results from the RELAX-AHF study. Eur J Heart Fail. 2015;17(11):1133–43. doi:.https://doi.org/10.1002/ejhf.331
  76. Bouabdallaoui N, Claggett B, Zile MR, McMurray JJV, O’Meara E, Packer M, et al.; PARADIGM-HF Investigators and Committees. Growth differentiation factor-15 is not modified by sacubitril/valsartan and is an independent marker of risk in patients with heart failure and reduced ejection fraction: the PARADIGM-HF trial. Eur J Heart Fail. 2018;20(12):1701–9. doi:.https://doi.org/10.1002/ejhf.1301
  77. Jougasaki M, Wei C-M, McKinley LJ, Burnett JC, Jr. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation. 1995;92(3):286–9. doi:.https://doi.org/10.1161/01.CIR.92.3.286
  78. Nagaya N, Satoh T, Nishikimi T, Uematsu M, Furuichi S, Sakamaki F, et al. Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation. 2000;101(5):498–503. doi:.https://doi.org/10.1161/01.CIR.101.5.498
  79. Self WH, Storrow AB, Hartmann O, Barrett TW, Fermann GJ, Maisel AS, et al. Plasma bioactive adrenomedullin as a prognostic biomarker in acute heart failure. Am J Emerg Med. 2016;34(2):257–62. doi:.https://doi.org/10.1016/j.ajem.2015.10.033
  80. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231–64. doi:.https://doi.org/10.1016/j.jacc.2018.08.1038
  81. Januzzi JL, Jr, Filippatos G, Nieminen M, Gheorghiade M. Troponin elevation in patients with heart failure: on behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur Heart J. 2012;33(18):2265–71. doi:.https://doi.org/10.1093/eurheartj/ehs191
  82. Del Carlo CH, Pereira-Barretto AC, Cassaro-Strunz C, Latorre MR, Ramires JAF. Serial measure of cardiac troponin T levels for prediction of clinical events in decompensated heart failure. J Card Fail. 2004;10(1):43–8. doi:.https://doi.org/10.1016/S1071-9164(03)00594-3
  83. Peacock WF, 4th, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, et al.; ADHERE Investigators. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358(20):2117–26. doi:.https://doi.org/10.1056/NEJMoa0706824
  84. You JJ, Austin PC, Alter DA, Ko DT, Tu JV. Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am Heart J. 2007;153(4):462–70. doi:.https://doi.org/10.1016/j.ahj.2007.01.027
  85. Metra M, Nodari S, Parrinello G, Specchia C, Brentana L, Rocca P, et al. The role of plasma biomarkers in acute heart failure. Serial changes and independent prognostic value of NT-proBNP and cardiac troponin-T. Eur J Heart Fail. 2007;9(8):776–86. doi:.https://doi.org/10.1016/j.ejheart.2007.05.007
  86. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JPM, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8. doi:.https://doi.org/10.1161/01.CIR.0000147181.65298.4D
  87. Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760(4):616–35. doi:.https://doi.org/10.1016/j.bbagen.2005.12.020
  88. van Kimmenade RR, Januzzi JL, Jr, Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48(6):1217–24. doi:.https://doi.org/10.1016/j.jacc.2006.03.061
  89. Miró Ò, González de la Presa B, Herrero-Puente P, Fernández Bonifacio R, Möckel M, Mueller C, et al. The GALA study: relationship between galectin-3 serum levels and short- and long-term outcomes of patients with acute heart failure. Biomarkers. 2017;22(8):731–9. doi:.https://doi.org/10.1080/1354750X.2017.1319421
  90. Zamora E, Lupón J, de Antonio M, Galán A, Domingo M, Urrutia A, et al. Renal function largely influences Galectin-3 prognostic value in heart failure. Int J Cardiol. 2014;177(1):171–7. doi:.https://doi.org/10.1016/j.ijcard.2014.09.011
  91. La Rocca G, Di Stefano A, Eleuteri E, Anzalone R, Magno F, Corrao S, et al. Oxidative stress induces myeloperoxidase expression in endocardial endothelial cells from patients with chronic heart failure. Basic Res Cardiol. 2009;104(3):307–20. doi:.https://doi.org/10.1007/s00395-008-0761-9
  92. Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25(6):1102–11. doi:.https://doi.org/10.1161/01.ATV.0000163262.83456.6d
  93. Reichlin T, Socrates T, Egli P, Potocki M, Breidthardt T, Arenja N, et al. Use of myeloperoxidase for risk stratification in acute heart failure. Clin Chem. 2010;56(6):944–51. doi:.https://doi.org/10.1373/clinchem.2009.142257
  94. Sato Y, Takatsu Y, Kataoka K, Yamada T, Taniguchi R, Sasayama S, et al. Serial circulating concentrations of C-reactive protein, interleukin (IL)-4, and IL-6 in patients with acute left heart decompensation. Clin Cardiol. 1999;22(12):811–3. doi:.https://doi.org/10.1002/clc.4960221211
  95. Peschel T, Schönauer M, Thiele H, Anker SD, Schuler G, Niebauer J. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail. 2003;5(5):609–14. doi:.https://doi.org/10.1016/S1388-9842(03)00104-1
  96. Krack A, Sharma R, Figulla HR, Anker SD. The importance of the gastrointestinal system in the pathogenesis of heart failure. Eur Heart J. 2005;26(22):2368–74. doi:.https://doi.org/10.1093/eurheartj/ehi389
  97. Alonso-Martínez JL, Llorente-Diez B, Echegaray-Agara M, Olaz-Preciado F, Urbieta-Echezarreta M, González-Arencibia C. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur J Heart Fail. 2002;4(3):331–6. doi:.https://doi.org/10.1016/S1388-9842(02)00021-1
  98. Anand IS, Latini R, Florea VG, Kuskowski MA, Rector T, Masson S, et al.; Val-HeFT Investigators. C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation. 2005;112(10):1428–34. doi:.https://doi.org/10.1161/CIRCULATIONAHA.104.508465
  99. Minami Y, Kajimoto K, Sato N, Hagiwara N, Takano T ; ATTEND Study Investigators. C-reactive protein level on admission and time to and cause of death in patients hospitalized for acute heart failure. Eur Heart J Qual Care Clin Outcomes. 2017;3(2):148–56.
  100. Siirilä-Waris K, Lassus J, Melin J, Peuhkurinen K, Nieminen MS, Harjola V-P ; FINN-AKVA Study Group. Characteristics, outcomes, and predictors of 1-year mortality in patients hospitalized for acute heart failure. Eur Heart J. 2006;27(24):3011–7. doi:.https://doi.org/10.1093/eurheartj/ehl407
  101. Mueller C, Laule-Kilian K, Christ A, Brunner-La Rocca HP, Perruchoud AP. Inflammation and long-term mortality in acute congestive heart failure. Am Heart J. 2006;151(4):845–50. doi:.https://doi.org/10.1016/j.ahj.2005.06.046
  102. Park JJ, Choi D-J, Yoon C-H, Oh I-Y, Jeon E-S, Kim J-J, et al.; KorHF Registry. Prognostic value of C-reactive protein as an inflammatory and N-terminal probrain natriuretic peptide as a neurohumoral marker in acute heart failure (from the Korean Heart Failure registry). Am J Cardiol. 2014;113(3):511–7. doi:.https://doi.org/10.1016/j.amjcard.2013.10.022
  103. Maeda K, Tsutamoto T, Wada A, Mabuchi N, Hayashi M, Tsutsui T, et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol. 2000;36(5):1587–93. doi:.https://doi.org/10.1016/S0735-1097(00)00912-8
  104. Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, Devalaraja M, Anker SD, Cleland JG, et al. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur J Heart Fail. 2019;21(8):965–73. doi:.https://doi.org/10.1002/ejhf.1482
  105. Hamzic-Mehmedbasic A. Inflammatory Cytokines as Risk Factors for Mortality After Acute Cardiac Events. Med Arch. 2016;70(4):252–5. doi:.https://doi.org/10.5455/medarh.2016.70.252-255
  106. Weintraub NL, Collins SP, Pang PS, Levy PD, Anderson AS, Arslanian-Engoren C, et al.; American Heart Association Council on Clinical Cardiology and Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Acute heart failure syndromes: emergency department presentation, treatment, and disposition: current approaches and future aims: a scientific statement from the American Heart Association. Circulation. 2010;122(19):1975–96. doi:.https://doi.org/10.1161/CIR.0b013e3181f9a223
  107. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31. doi:.https://doi.org/10.1093/eurheartj/ehu207
  108. Akiyama E, Van Aelst LNL, Arrigo M, Lassus J, Miró Ò, Čelutkienė J, et al.; GREAT (Global Research on Acute Conditions Team) Network. East Asia may have a better 1-year survival following an acute heart failure episode compared with Europe: results from an international observational cohort. Eur J Heart Fail. 2018;20(6):1071–5. doi:.https://doi.org/10.1002/ejhf.1152
  109. Motiejūnaitė J, Akiyama E, Cohen-Solal A, Maggioni AP, Mueller C, Choi D-J, et al. The association of long-term outcome and biological sex in patients with acute heart failure from different geographic regions. Eur Heart J. 2020;41(13):1357–64. doi:.https://doi.org/10.1093/eurheartj/ehaa071
  110. Janssen KJM, Moons KGM, Kalkman CJ, Grobbee DE, Vergouwe Y. Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol. 2008;61(1):76–86. doi:.https://doi.org/10.1016/j.jclinepi.2007.04.018
  111. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290(19):2581–7. doi:.https://doi.org/10.1001/jama.290.19.2581
  112. Fonarow GC, Adams KF, Jr, Abraham WT, Yancy CW, Boscardin WJ ; ADHERE Scientific Advisory Committee, Study Group, and Investigators. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293(5):572–80. doi:.https://doi.org/10.1001/jama.293.5.572
  113. Auble TE, Hsieh M, Gardner W, Cooper GF, Stone RA, McCausland JB, et al. A prediction rule to identify low-risk patients with heart failure. Acad Emerg Med. 2005;12(6):514–21. doi:.https://doi.org/10.1197/j.aem.2004.11.026
  114. Peterson PN, Rumsfeld JS, Liang L, Albert NM, Hernandez AF, Peterson ED, et al.; American Heart Association Get With the Guidelines-Heart Failure Program. A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ Cardiovasc Qual Outcomes. 2010;3(1):25–32. doi:.https://doi.org/10.1161/CIRCOUTCOMES.109.854877
  115. Scrutinio D, Ammirati E, Guida P, Passantino A, Raimondo R, Guida V, et al. Clinical utility of N-terminal pro-B-type natriuretic peptide for risk stratification of patients with acute decompensated heart failure. Derivation and validation of the ADHF/NT-proBNP risk score. Int J Cardiol. 2013;168(3):2120–6. doi:.https://doi.org/10.1016/j.ijcard.2013.01.005
  116. Salah K, Kok WE, Eurlings LW, Bettencourt P, Pimenta JM, Metra M, et al. A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ELAN-HF Score. Heart. 2014;100(2):115–25. doi:.https://doi.org/10.1136/heartjnl-2013-303632
  117. Collins SP, Jenkins CA, Harrell FE, Jr, Liu D, Miller KF, Lindsell CJ, et al. Identification of Emergency Department Patients With Acute Heart Failure at Low Risk for 30-Day Adverse Events: The STRATIFY Decision Tool. JACC Heart Fail. 2015;3(10):737–47. doi:.https://doi.org/10.1016/j.jchf.2015.05.007
  118. Testani JM, Cappola TP, Brensinger CM, Shannon RP, Kimmel SE. Interaction between loop diuretic-associated mortality and blood urea nitrogen concentration in chronic heart failure. J Am Coll Cardiol. 2011;58(4):375–82. doi:.https://doi.org/10.1016/j.jacc.2011.01.052
  119. Arenja N, Breidthardt T, Socrates T, Schindler C, Heinisch C, Tschung C, et al. Risk stratification for 1-year mortality in acute heart failure: classification and regression tree analysis. Swiss Med Wkly. 2011;141:w13259. doi:.https://doi.org/10.4414/smw.2011.13259
  120. Hsiao J, Motta M, Wyer P. Validating the acute heart failure index for patients presenting to the emergency department with decompensated heart failure. Emerg Med J. 2012;29(12):e5. doi:.https://doi.org/10.1136/emermed-2011-200610
  121. Hsieh M, Auble TE, Yealy DM. Validation of the Acute Heart Failure Index. Ann Emerg Med. 2008;51(1):37–44. doi:.https://doi.org/10.1016/j.annemergmed.2007.07.026
  122. Sepehrvand N, Youngson E, Bakal JA, McAlister FA, Rowe BH, Ezekowitz JA. External Validation and Refinement of Emergency Heart Failure Mortality Risk Grade Risk Model in Patients With Heart Failure in the Emergency Department. CJC Open. 2019;1(3):123–30. doi:.https://doi.org/10.1016/j.cjco.2019.03.003
  123. Stiell IG, Perry JJ, Clement CM, Brison RJ, Rowe BH, Aaron SD, et al. Prospective and Explicit Clinical Validation of the Ottawa Heart Failure Risk Scale, With and Without Use of Quantitative NT-proBNP. Acad Emerg Med. 2017;24(3):316–27. doi:.https://doi.org/10.1111/acem.13141

Most read articles by the same author(s)

1 2 > >>