Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 150 No. 1516 (2020)

A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations

  • Alicia Sanchez-Mazas
DOI
https://doi.org/10.4414/smw.2020.20214
Cite this as:
Swiss Med Wkly. 2020;150:w20214
Published
16.04.2020

Summary

Human leucocyte antigen (HLA) alleles and single nucleotide polymorphisms (SNPs) lying in the HLA region are known to be associated with several infectious diseases among which acquired immunodeficiency syndrome, hepatitis B, hepatitis C, tuberculosis, leprosy and malaria are highly prevalent in many human populations worldwide. Distinct approaches such as case-control comparisons, immunogenetic analyses, bioinformatic peptide-binding predictions, ancient DNA and genome-wide association studies (GWAS) have contributed to improving this knowledge during the last decade, although many results still need stronger statistical and/or functional support. The present review updates the information regarding the main HLA allele and SNP associations observed to date for six of the most widespread and some other infectious diseases, and provides a synthetic illustration of these findings on a schematic HLA genomic map. It then discusses these results by stressing the importance of integrating information on HLA population diversity in disease-association studies.

References

  1. Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020;48(D1):D948–55. doi:.https://doi.org/10.1093/nar/gkz950
  2. Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009;54(1):15–39. doi:.https://doi.org/10.1038/jhg.2008.5
  3. Parham P, Janeway C. The immune system. 4th edition. New York, NY: Garland Science, Taylor & Francis Group; 2015
  4. Buhler S, Sanchez-Mazas A. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PLoS One. 2011;6(2):e14643. doi:.https://doi.org/10.1371/journal.pone.0014643
  5. Solberg OD, Mack SJ, Lancaster AK, Single RM, Tsai Y, Sanchez-Mazas A, et al. Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies. Hum Immunol. 2008;69(7):443–64. doi:.https://doi.org/10.1016/j.humimm.2008.05.001
  6. Doherty PC, Zinkernagel RM. A biological role for the major histocompatibility antigens. Lancet. 1975;305(7922):1406–9. doi:.https://doi.org/10.1016/S0140-6736(75)92610-0
  7. Lenz TL. Computational prediction of MHC II-antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution. 2011;65(8):2380–90. doi:.https://doi.org/10.1111/j.1558-5646.2011.01288.x
  8. Bitarello BD, Francisco RS, Meyer D. Heterogeneity of dN/dS ratios at the classical HLA Class I genes over divergence time and across the allelic phylogeny. J Mol Evol. 2016;82(1):38–50. doi:.https://doi.org/10.1007/s00239-015-9713-9
  9. Wakeland EK, Boehme S, She JX, Lu CC, McIndoe RA, Cheng I, et al. Ancestral polymorphisms of MHC class II genes: divergent allele advantage. Immunol Res. 1990;9(2):115–22. doi:.https://doi.org/10.1007/BF02918202
  10. Buhler S, Nunes JM, Sanchez-Mazas A. HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection. Immunogenetics. 2016;68(6-7):401–16. doi:.https://doi.org/10.1007/s00251-016-0918-x
  11. Meyer D, Thomson G. How selection shapes variation of the human major histocompatibility complex: a review. Ann Hum Genet. 2001;65(Pt 1):1–26. doi:.https://doi.org/10.1046/j.1469-1809.2001.6510001.x
  12. Lipsitch M, Bergstrom CT, Antia R. Effect of human leukocyte antigen heterozygosity on infectious disease outcome: the need for allele-specific measures. BMC Med Genet. 2003;4(1):2. doi:.https://doi.org/10.1186/1471-2350-4-2
  13. de Groot NG, Otting N, Doxiadis GG, Balla-Jhagjhoorsingh SS, Heeney JL, van Rood JJ, et al. Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc Natl Acad Sci USA. 2002;99(18):11748–53. doi:.https://doi.org/10.1073/pnas.182420799
  14. de Groot NG, Heijmans CM, de Groot N, Otting N, de Vos-Rouweller AJ, Remarque EJ, et al. Pinpointing a selective sweep to the chimpanzee MHC class I region by comparative genomics. Mol Ecol. 2008;17(8):2074–88. doi:.https://doi.org/10.1111/j.1365-294X.2008.03716.x
  15. de Groot NG, Heijmans CMC, Helsen P, Otting N, Pereboom Z, Stevens JMG, et al. Limited MHC class I intron 2 repertoire variation in bonobos. Immunogenetics. 2017;69(10):677–88. doi:.https://doi.org/10.1007/s00251-017-1010-x
  16. Meyer D, C Aguiar VR, Bitarello BD, C Brandt DY, Nunes K. A genomic perspective on HLA evolution. Immunogenetics. 2018;70(1):5–27. doi:.https://doi.org/10.1007/s00251-017-1017-3
  17. Klebanov N. Genetic predisposition to infectious disease. Cureus. 2018;10(8):e3210. doi:.https://doi.org/10.7759/cureus.3210
  18. Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009;22(2):370–85. doi:.https://doi.org/10.1128/CMR.00048-08
  19. Alper CA. Major Histocompatibility Complex: Disease Associations, in Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons, Ltd; 2009. pp. 1−7.
  20. Trowsdale J. The MHC, disease and selection. Immunol Lett. 2011;137(1-2):1–8. doi:.https://doi.org/10.1016/j.imlet.2011.01.002
  21. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018;18(5):325–39. doi:.https://doi.org/10.1038/nri.2017.143
  22. Trowsdale J, Knight JC. Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet. 2013;14(1):301–23. doi:.https://doi.org/10.1146/annurev-genom-091212-153455
  23. Abel L, Alcaïs A, Schurr E. The dissection of complex susceptibility to infectious disease: bacterial, viral and parasitic infections. Curr Opin Immunol. 2014;30:72–8. doi:.https://doi.org/10.1016/j.coi.2014.07.002
  24. Cardoso DM, Marangon AV, Sell AM, Visentainer JEL, De Souza CA. HLA and infectious diseases. In: HLA and associated important diseases. Xi Y, editor. Rijeka, Croatia: InTech; 2014. pp. 259−300.
  25. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens. 2004;64(6):631–49. doi:.https://doi.org/10.1111/j.1399-0039.2004.00327.x
  26. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, et al. Positive natural selection in the human lineage. Science. 2006;312(5780):1614–20. doi:.https://doi.org/10.1126/science.1124309
  27. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017;18(1):76. doi:.https://doi.org/10.1186/s13059-017-1207-1
  28. Mozzi A, Pontremoli C, Sironi M. Genetic susceptibility to infectious diseases: Current status and future perspectives from genome-wide approaches. Infect Genet Evol. 2018;66:286–307. doi:.https://doi.org/10.1016/j.meegid.2017.09.028
  29. Tian C, Hromatka BS, Kiefer AK, Eriksson N, Noble SM, Tung JY, et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat Commun. 2017;8(1):599. doi:.https://doi.org/10.1038/s41467-017-00257-5
  30. McLaren PJ, Carrington M. The impact of host genetic variation on infection with HIV-1. Nat Immunol. 2015;16(6):577–83. doi:.https://doi.org/10.1038/ni.3147
  31. Tang J, Costello C, Keet IP, Rivers C, Leblanc S, Karita E, et al. HLA class I homozygosity accelerates disease progression in human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses. 1999;15(4):317–24. doi:.https://doi.org/10.1089/088922299311277
  32. Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science. 1999;283(5408):1748–52. doi:.https://doi.org/10.1126/science.283.5408.1748
  33. Itescu S, Mathur-Wagh U, Skovron ML, Brancato LJ, Marmor M, Zeleniuch-Jacquotte A, et al. HLA-B35 is associated with accelerated progression to AIDS. J Acquir Immune Defic Syndr (1988). 1992;5(1):37–45.
  34. Gao X, Nelson GW, Karacki P, Martin MP, Phair J, Kaslow R, et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N Engl J Med. 2001;344(22):1668–75. doi:.https://doi.org/10.1056/NEJM200105313442203
  35. Scherer A, Frater J, Oxenius A, Agudelo J, Price DA, Günthard HF, et al.; Swiss HIV Cohort Study. Quantifiable cytotoxic T lymphocyte responses and HLA-related risk of progression to AIDS. Proc Natl Acad Sci USA. 2004;101(33):12266–70. doi:.https://doi.org/10.1073/pnas.0404091101
  36. Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI, Walker BD, et al., International HIV Controllers Study. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science. 2010;330(6010):1551–7. doi:.https://doi.org/10.1126/science.1195271
  37. Kulski JK. Long noncoding RNA HCP5, a hybrid HLA Class I endogenous retroviral gene: structure, expression, and disease associations. Cells. 2019;8(5):480. doi:.https://doi.org/10.3390/cells8050480
  38. Fellay J, Ge D, Shianna KV, Colombo S, Ledergerber B, Cirulli ET, et al.; NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI). Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 2009;5(12):e1000791. doi:.https://doi.org/10.1371/journal.pgen.1000791
  39. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317(5840):944–7. doi:.https://doi.org/10.1126/science.1143767
  40. Limou S, Le Clerc S, Coulonges C, Carpentier W, Dina C, Delaneau O, et al.; ANRS Genomic Group. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J Infect Dis. 2009;199(3):419–26. doi:.https://doi.org/10.1086/596067
  41. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci USA. 2000;97(6):2709–14. doi:.https://doi.org/10.1073/pnas.050567397
  42. Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002;359(9312):1121–2. doi:.https://doi.org/10.1016/S0140-6736(02)08158-8
  43. Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32. doi:.https://doi.org/10.1016/S0140-6736(02)07873-X
  44. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al.; PREDICT-1 Study Team. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–79. doi:.https://doi.org/10.1056/NEJMoa0706135
  45. Saag M, Balu R, Phillips E, Brachman P, Martorell C, Burman W, et al.; Study of Hypersensitivity to Abacavir and Pharmacogenetic Evaluation Study Team. High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis. 2008;46(7):1111–8. doi:.https://doi.org/10.1086/529382
  46. Kløverpris HN, Leslie A, Goulder P. Role of HLA Adaptation in HIV Evolution. Front Immunol. 2016;6:665. doi:.https://doi.org/10.3389/fimmu.2015.00665
  47. Arora J, McLaren PJ, Chaturvedi N, Carrington M, Fellay J, Lenz TL. HIV peptidome-wide association study reveals patient-specific epitope repertoires associated with HIV control. Proc Natl Acad Sci USA. 2019;116(3):944–9. doi:.https://doi.org/10.1073/pnas.1812548116
  48. Bardeskar NS, Mania-Pramanik J. HIV and host immunogenetics: unraveling the role of HLA-C. HLA. 2016;88(5):221–31. doi:.https://doi.org/10.1111/tan.12882
  49. Apps R, Qi Y, Carlson JM, Chen H, Gao X, Thomas R, et al. Influence of HLA-C expression level on HIV control. Science. 2013;340(6128):87–91. doi:.https://doi.org/10.1126/science.1232685
  50. Blais ME, Zhang Y, Rostron T, Griffin H, Taylor S, Xu K, et al. High frequency of HIV mutations associated with HLA-C suggests enhanced HLA-C-restricted CTL selective pressure associated with an AIDS-protective polymorphism. J Immunol. 2012;188(9):4663–70. doi:.https://doi.org/10.4049/jimmunol.1103472
  51. Kulkarni S, Qi Y, O’hUigin C, Pereyra F, Ramsuran V, McLaren P, et al. Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc Natl Acad Sci USA. 2013;110(51):20705–10. doi:.https://doi.org/10.1073/pnas.1312237110
  52. Kulkarni S, Savan R, Qi Y, Gao X, Yuki Y, Bass SE, et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature. 2011;472(7344):495–8. doi:.https://doi.org/10.1038/nature09914
  53. Kulpa DA, Collins KL. The emerging role of HLA-C in HIV-1 infection. Immunology. 2011;134(2):116–22. doi:.https://doi.org/10.1111/j.1365-2567.2011.03474.x
  54. O’hUigin C, Kulkarni S, Xu Y, Deng Z, Kidd J, Kidd K, et al. The molecular origin and consequences of escape from miRNA regulation by HLA-C alleles. Am J Hum Genet. 2011;89(3):424–31. doi:.https://doi.org/10.1016/j.ajhg.2011.07.024
  55. Zipeto D, Beretta A. HLA-C and HIV-1: friends or foes? Retrovirology. 2012;9(1):39. doi:.https://doi.org/10.1186/1742-4690-9-39
  56. Pelak K, Goldstein DB, Walley NM, Fellay J, Ge D, Shianna KV, et al.; Infectious Disease Clinical Research Program HIV Working Group; National Institute of Allergy and Infectious Diseases Center for HIV/AIDS Vaccine Immunology (CHAVI). Host determinants of HIV-1 control in African Americans. J Infect Dis. 2010;201(8):1141–9. doi:.https://doi.org/10.1086/651382
  57. Costello C, Tang J, Rivers C, Karita E, Meizen-Derr J, Allen S, et al. HLA-B*5703 independently associated with slower HIV-1 disease progression in Rwandan women. AIDS. 1999;13(14):1990–1. doi:.https://doi.org/10.1097/00002030-199910010-00031
  58. Adland E, Hill M, Lavandier N, Csala A, Edwards A, Chen F, et al. Differential immunodominance hierarchy of CD8+ T-Cell responses in HLA-B*27:05- and -B*27:02-mediated control of HIV-1 infection. J Virol. 2018;92(4):e01685-17. doi:.https://doi.org/10.1128/JVI.01685-17
  59. Kaslow RA, Carrington M, Apple R, Park L, Muñoz A, Saah AJ, et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med. 1996;2(4):405–11. doi:.https://doi.org/10.1038/nm0496-405
  60. Arora J, Pierini F, McLaren PJ, Carrington M, Fellay J, Lenz TL. HLA heterozygote advantage against HIV-1 is driven by quantitative and qualitative differences in HLA allele-specific peptide presentation. Mol Biol Evol. 2020;37(3):639–50. doi:.https://doi.org/10.1093/molbev/msz249
  61. Zuckerman AJ. Hepatitis viruses. In: Medical Microbiology. Baron S, editor. Galveston, TX: University of Texas Medical Branch at Galveston; 1996.
  62. WHO. Global hepatitis report 2017. Geneva, Switzerland: World Health Organization; 2017; p. 83.
  63. Wang L, Wu XP, Zhang W, Zhu DH, Wang Y, Li YP, et al. Evaluation of genetic susceptibility loci for chronic hepatitis B in Chinese: two independent case-control studies. PLoS One. 2011;6(3):e17608. doi:.https://doi.org/10.1371/journal.pone.0017608
  64. Matsuura K, Isogawa M, Tanaka Y. Host genetic variants influencing the clinical course of hepatitis B virus infection. J Med Virol. 2016;88(3):371–9. doi:.https://doi.org/10.1002/jmv.24350
  65. Zhang Z, Wang C, Liu Z, Zou G, Li J, Lu M. Host genetic determinants of hepatitis B virus infection. Front Genet. 2019;10:696. doi:.https://doi.org/10.3389/fgene.2019.00696
  66. Thio CL, Carrington M, Marti D, O’Brien SJ, Vlahov D, Nelson KE, et al. Class II HLA alleles and hepatitis B virus persistence in African Americans. J Infect Dis. 1999;179(4):1004–6. doi:.https://doi.org/10.1086/314684
  67. Thursz MR, Thomas HC, Greenwood BM, Hill AV. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat Genet. 1997;17(1):11–2. doi:.https://doi.org/10.1038/ng0997-11
  68. Zhang Y, Zhao F, Lan L, Qin Z, Jun L. Correlation of HLA-DQB1 gene polymorphism of Xinjiang Uygur with outcome of HBV infection. Int J Clin Exp Med. 2015;8(4):6067–72.
  69. Thursz MR, Kwiatkowski D, Allsopp CE, Greenwood BM, Thomas HC, Hill AV. Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. N Engl J Med. 1995;332(16):1065–9. doi:.https://doi.org/10.1056/NEJM199504203321604
  70. Thio CL, Thomas DL, Karacki P, Gao X, Marti D, Kaslow RA, et al. Comprehensive analysis of class I and class II HLA antigens and chronic hepatitis B virus infection. J Virol. 2003;77(22):12083–7. doi:.https://doi.org/10.1128/JVI.77.22.12083-12087.2003
  71. Nishida N, Sawai H, Kashiwase K, Minami M, Sugiyama M, Seto WK, et al. New susceptibility and resistance HLA-DP alleles to HBV-related diseases identified by a trans-ethnic association study in Asia. PLoS One. 2014;9(2):e86449. doi:.https://doi.org/10.1371/journal.pone.0086449
  72. Höhler T, Gerken G, Notghi A, Lubjuhn R, Taheri H, Protzer U, et al. HLA-DRB1*1301 and *1302 protect against chronic hepatitis B. J Hepatol. 1997;26(3):503–7. doi:.https://doi.org/10.1016/S0168-8278(97)80414-X
  73. Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, Hosono N, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet. 2009;41(5):591–5. doi:.https://doi.org/10.1038/ng.348
  74. Mbarek H, Ochi H, Urabe Y, Kumar V, Kubo M, Hosono N, et al. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum Mol Genet. 2011;20(19):3884–92. doi:.https://doi.org/10.1093/hmg/ddr301
  75. Zhu M, Dai J, Wang C, Wang Y, Qin N, Ma H, et al. Fine mapping the MHC region identified four independent variants modifying susceptibility to chronic hepatitis B in Han Chinese. Hum Mol Genet. 2016;25(6):1225–32. doi:.https://doi.org/10.1093/hmg/ddw003
  76. O’Brien TR, Kohaar I, Pfeiffer RM, Maeder D, Yeager M, Schadt EE, et al. Risk alleles for chronic hepatitis B are associated with decreased mRNA expression of HLA-DPA1 and HLA-DPB1 in normal human liver. Genes Immun. 2011;12(6):428–33. doi:.https://doi.org/10.1038/gene.2011.11
  77. D’Antonio M, Reyna J, Jakubosky D, Donovan MK, Bonder M-J, Matsui H, et al. Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease. eLife. 2019;8:e48476. doi:.https://doi.org/10.7554/eLife.48476
  78. Thomas R, Thio CL, Apps R, Qi Y, Gao X, Marti D, et al. A novel variant marking HLA-DP expression levels predicts recovery from hepatitis B virus infection. J Virol. 2012;86(12):6979–85. doi:.https://doi.org/10.1128/JVI.00406-12
  79. Chang SW, Fann CS, Su WH, Wang YC, Weng CC, Yu CJ, et al. A genome-wide association study on chronic HBV infection and its clinical progression in male Han-Taiwanese. PLoS One. 2014;9(6):e99724. doi:.https://doi.org/10.1371/journal.pone.0099724
  80. Nishida N, Sawai H, Matsuura K, Sugiyama M, Ahn SH, Park JY, et al. Genome-wide association study confirming association of HLA-DP with protection against chronic hepatitis B and viral clearance in Japanese and Korean. PLoS One. 2012;7(6):e39175. doi:.https://doi.org/10.1371/journal.pone.0039175
  81. Trinks J, Nishida N, Hulaniuk ML, Caputo M, Tsuchiura T, Marciano S, et al. Role of HLA-DP and HLA-DQ on the clearance of hepatitis B virus and the risk of chronic infection in a multiethnic population. Liver Int. 2017;37(10):1476–87. doi:.https://doi.org/10.1111/liv.13405
  82. Al-Qahtani AA, Al-Anazi MR, Abdo AA, Sanai FM, Al-Hamoudi W, Alswat KA, et al. Association between HLA variations and chronic hepatitis B virus infection in Saudi Arabian patients. PLoS One. 2014;9(1):e80445. doi:.https://doi.org/10.1371/journal.pone.0080445
  83. Lau KC, Lam CW, Law CY, Lai ST, Tsang TY, Siu CW, et al. Non-invasive screening of HLA-DPA1 and HLA-DPB1 alleles for persistent hepatitis B virus infection: susceptibility for vertical transmission and toward a personalized approach for vaccination and treatment. Clin Chim Acta. 2011;412(11-12):952–7. doi:.https://doi.org/10.1016/j.cca.2011.01.030
  84. Hu L, Zhai X, Liu J, Chu M, Pan S, Jiang J, et al. Genetic variants in human leukocyte antigen/DP-DQ influence both hepatitis B virus clearance and hepatocellular carcinoma development. Hepatology. 2012;55(5):1426–31. doi:.https://doi.org/10.1002/hep.24799
  85. Hu Z, Liu Y, Zhai X, Dai J, Jin G, Wang L, et al. New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat Genet. 2013;45(12):1499–503. doi:.https://doi.org/10.1038/ng.2809
  86. Hu Z, Yang J, Xiong G, Shi H, Yuan Y, Fan L, et al. HLA-DPB1 variant effect on hepatitis b virus clearance and liver cirrhosis development among southwest Chinese population. Hepat Mon. 2014;14(8):e19747. doi:.https://doi.org/10.5812/hepatmon.19747
  87. Kim YJ, Kim HY, Lee JH, Yu SJ, Yoon JH, Lee HS, et al. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. Hum Mol Genet. 2013;22(20):4233–8. doi:.https://doi.org/10.1093/hmg/ddt266
  88. Jiang DK, Ma XP, Yu H, Cao G, Ding DL, Chen H, et al. Genetic variants in five novel loci including CFB and CD40 predispose to chronic hepatitis B. Hepatology. 2015;62(1):118–28. doi:.https://doi.org/10.1002/hep.27794
  89. Vermehren J, Lötsch J, Susser S, Wicker S, Berger A, Zeuzem S, et al. A common HLA-DPA1 variant is associated with hepatitis B virus infection but fails to distinguish active from inactive Caucasian carriers. PLoS One. 2012;7(3):e32605. doi:.https://doi.org/10.1371/journal.pone.0032605
  90. Tao J, Su K, Yu C, Liu X, Wu W, Xu W, et al. Fine mapping analysis of HLA-DP/DQ gene clusters on chromosome 6 reveals multiple susceptibility loci for HBV infection. Amino Acids. 2015;47(12):2623–34. doi:.https://doi.org/10.1007/s00726-015-2054-6
  91. Yu L, Cheng YJ, Cheng ML, Yao YM, Zhang Q, Zhao XK, et al. Quantitative assessment of common genetic variations in HLA-DP with hepatitis B virus infection, clearance and hepatocellular carcinoma development. Sci Rep. 2015;5(1):14933. doi:.https://doi.org/10.1038/srep14933
  92. Thio CL, Gao X, Goedert JJ, Vlahov D, Nelson KE, Hilgartner MW, et al. HLA-Cw*04 and hepatitis C virus persistence. J Virol. 2002;76(10):4792–7. doi:.https://doi.org/10.1128/JVI.76.10.4792-4797.2002
  93. McKiernan SM, Hagan R, Curry M, McDonald GS, Kelly A, Nolan N, et al. Distinct MHC class I and II alleles are associated with hepatitis C viral clearance, originating from a single source. Hepatology. 2004;40(1):108–14. doi:.https://doi.org/10.1002/hep.20261
  94. Amini M, Poustchi H. Hepatitis C virus spontaneous clearance: immunology and genetic variance. Viral Immunol. 2012;25(4):241–8. doi:.https://doi.org/10.1089/vim.2011.0052
  95. Kuniholm MH, Kovacs A, Gao X, Xue X, Marti D, Thio CL, et al. Specific human leukocyte antigen class I and II alleles associated with hepatitis C virus viremia. Hepatology. 2010;51(5):1514–22. doi:.https://doi.org/10.1002/hep.23515
  96. Thio CL, Thomas DL, Goedert JJ, Vlahov D, Nelson KE, Hilgartner MW, et al. Racial differences in HLA class II associations with hepatitis C virus outcomes. J Infect Dis. 2001;184(1):16–21. doi:.https://doi.org/10.1086/321005
  97. Hong Z, Smart G, Dawood M, Kaita K, Wen SW, Gomes J, et al. Hepatitis C infection and survivals of liver transplant patients in Canada, 1997-2003. Transplant Proc. 2008;40(5):1466–70. doi:.https://doi.org/10.1016/j.transproceed.2008.03.089
  98. Harris RA, Sugimoto K, Kaplan DE, Ikeda F, Kamoun M, Chang KM. Human leukocyte antigen class II associations with hepatitis C virus clearance and virus-specific CD4 T cell response among Caucasians and African Americans. Hepatology. 2008;48(1):70–9. doi:.https://doi.org/10.1002/hep.22287
  99. Huang J, Huang K, Xu R, Wang M, Liao Q, Xiong H, et al. The Associations of HLA-A*02:01 and DRB1*11:01 with Hepatitis C Virus Spontaneous Clearance Are Independent of IL28B in the Chinese Population. Sci Rep. 2016;6(1):31485. doi:.https://doi.org/10.1038/srep31485
  100. Gauthiez E, Habfast-Robertson I, Rüeger S, Kutalik Z, Aubert V, Berg T, et al.; Swiss Hepatitis C Cohort Study. A systematic review and meta-analysis of HCV clearance. Liver Int. 2017;37(10):1431–45. doi:.https://doi.org/10.1111/liv.13401
  101. Duggal P, Thio CL, Wojcik GL, Goedert JJ, Mangia A, Latanich R, et al. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann Intern Med. 2013;158(4):235–45. doi:.https://doi.org/10.7326/0003-4819-158-4-201302190-00003
  102. Miki D, Ochi H, Takahashi A, Hayes CN, Urabe Y, Abe H, et al. HLA-DQB1*03 confers susceptibility to chronic hepatitis C in Japanese: a genome-wide association study. PLoS One. 2013;8(12):e84226. doi:.https://doi.org/10.1371/journal.pone.0084226
  103. Xu X, Yue M, Jiang L, Deng X, Zhang Y, Zhang Y, et al. Genetic variants in human leukocyte antigen-DP influence both hepatitis C virus persistence and hepatitis C virus F protein generation in the Chinese Han population. Int J Mol Sci. 2014;15(6):9826–43. doi:.https://doi.org/10.3390/ijms15069826
  104. Thoens C, Heinold A, Lindemann M, Horn PA, Chang DI, Scherbaum N, et al. A single-nucleotide polymorphism upstream of the HLA-C locus is associated with an anti-hepatitis C virus-seronegative state in a high-risk exposed cohort. J Infect Dis. 2018;218(12):2016–9. doi:.https://doi.org/10.1093/infdis/jiy492
  105. Sawai H, Nishida N, Khor SS, Honda M, Sugiyama M, Baba N, et al. Genome-wide association study identified new susceptible genetic variants in HLA class I region for hepatitis B virus-related hepatocellular carcinoma. Sci Rep. 2018;8(1):7958. doi:.https://doi.org/10.1038/s41598-018-26217-7
  106. Omae Y, Tokunaga K. Genetics of infectious diseases, in Genome-wide association studies. Tsunoda T, Tanaka T, and Nakamura Y, editors. Singapore: Springer; 2019. pp. 145−74.
  107. Spinola H. HLA loci and respiratory infectious diseases. Journal of Respiratory Research. 2016;2(3):56–66. doi:.https://doi.org/10.17554/j.issn.2412-2424.2016.02.15
  108. Oliveira-Cortez A, Melo AC, Chaves VE, Condino-Neto A, Camargos P. Do HLA class II genes protect against pulmonary tuberculosis? A systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2016;35(10):1567–80. doi:.https://doi.org/10.1007/s10096-016-2713-x
  109. Harishankar M, Selvaraj P, Bethunaickan R. Influence of genetic polymorphism towards pulmonary tuberculosis susceptibility. Front Med (Lausanne). 2018;5:213. doi:.https://doi.org/10.3389/fmed.2018.00213
  110. Yim JJ, Selvaraj P. Genetic susceptibility in tuberculosis. Respirology. 2010;15(2):241–56. doi:.https://doi.org/10.1111/j.1440-1843.2009.01690.x
  111. Kone A, Diarra B, Cohen K, Diabate S, Kone B, Diakite MT, et al. Differential HLA allele frequency in Mycobacterium africanum vs Mycobacterium tuberculosis in Mali. HLA. 2019;93(1):24–31. doi:.https://doi.org/10.1111/tan.13448
  112. Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, Kristinsson KG, Gottfredsson M, Barrett JC, et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet. 2016;48(3):318–22. doi:.https://doi.org/10.1038/ng.3498
  113. Qi H, Zhang YB, Sun L, Chen C, Xu B, Xu F, et al. Discovery of susceptibility loci associated with tuberculosis in Han Chinese. Hum Mol Genet. 2017;26(23):4752–63. doi:.https://doi.org/10.1093/hmg/ddx365
  114. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2006;103(8):2869–73. doi:.https://doi.org/10.1073/pnas.0511240103
  115. Toyo-Oka L, Mahasirimongkol S, Yanai H, Mushiroda T, Wattanapokayakit S, Wichukchinda N, et al. Strain-based HLA association analysis identified HLA-DRB1*09:01 associated with modern strain tuberculosis. HLA. 2017;90(3):149–56. doi:.https://doi.org/10.1111/tan.13070
  116. Ndzi EN, Nkenfou CN, Pefura EWY, Mekue LCM, Guiedem E, Nguefeu CN, et al. Tuberculosis diagnosis: algorithm that May discriminate latent from active tuberculosis. Heliyon. 2019;5(10):e02559. doi:.https://doi.org/10.1016/j.heliyon.2019.e02559
  117. Jarduli LR, Sell AM, Reis PG, Sippert EA, Ayo CM, Mazini PS, et al. Role of HLA, KIR, MICA, and cytokines genes in leprosy. BioMed Res Int. 2013;2013:989837. doi:.https://doi.org/10.1155/2013/989837
  118. Wong SH, Gochhait S, Malhotra D, Pettersson FH, Teo YY, Khor CC, et al. Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog. 2010;6(7):e1000979. doi:.https://doi.org/10.1371/journal.ppat.1000979
  119. Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361(27):2609–18. doi:.https://doi.org/10.1056/NEJMoa0903753
  120. Liu H, Irwanto A, Fu X, Yu G, Yu Y, Sun Y, et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat Genet. 2015;47(3):267–71. doi:.https://doi.org/10.1038/ng.3212
  121. Krause-Kyora B, Nutsua M, Boehme L, Pierini F, Pedersen DD, Kornell SC, et al. Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans. Nat Commun. 2018;9(1):1569. doi:.https://doi.org/10.1038/s41467-018-03857-x
  122. Alter A, Huong NT, Singh M, Orlova M, Van Thuc N, Katoch K, et al. Human leukocyte antigen class I region single-nucleotide polymorphisms are associated with leprosy susceptibility in Vietnam and India. J Infect Dis. 2011;203(9):1274–81. doi:.https://doi.org/10.1093/infdis/jir024
  123. WHO. World Malaria Report 2019. Geneva, Switzerland: World Health Organization; 2019.
  124. Verra F, Mangano VD, Modiano D. Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol. 2009;31(5):234–53. doi:.https://doi.org/10.1111/j.1365-3024.2009.01106.x
  125. Garcia A, Milet J, Courtin D, Sabbagh A, Massaro JD, Castelli EC, et al. Association of HLA-G 3'UTR polymorphisms with response to malaria infection: a first insight. Infect Genet Evol. 2013;16:263–9. doi:.https://doi.org/10.1016/j.meegid.2013.02.021
  126. Sabbagh A, Courtin D, Milet J, Massaro JD, Castelli EC, Migot-Nabias F, et al. Association of HLA-G 3′ untranslated region polymorphisms with antibody response against Plasmodium falciparum antigens: preliminary results. Tissue Antigens. 2013;82(1):53–8. doi:.https://doi.org/10.1111/tan.12140
  127. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, et al. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991;352(6336):595–600. doi:.https://doi.org/10.1038/352595a0
  128. Hill AV, Elvin J, Willis AC, Aidoo M, Allsopp CE, Gotch FM, et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature. 1992;360(6403):434–9. doi:.https://doi.org/10.1038/360434a0
  129. Lyke KE, Fernández-Viňa MA, Cao K, Hollenbach J, Coulibaly D, Kone AK, et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 2011;77(6):562–71. doi:.https://doi.org/10.1111/j.1399-0039.2011.01661.x
  130. Garamszegi LZ. Global distribution of malaria-resistant MHC-HLA alleles: the number and frequencies of alleles and malaria risk. Malar J. 2014;13(1):349. doi:.https://doi.org/10.1186/1475-2875-13-349
  131. Sanchez-Mazas A, Černý V, Di D, Buhler S, Podgorná E, Chevallier E, et al. The HLA-B landscape of Africa: Signatures of pathogen-driven selection and molecular identification of candidate alleles to malaria protection. Mol Ecol. 2017;26(22):6238–52. doi:.https://doi.org/10.1111/mec.14366
  132. Yamazaki A, Yasunami M, Ofori M, Horie H, Kikuchi M, Helegbe G, et al. Human leukocyte antigen class I polymorphisms influence the mild clinical manifestation of Plasmodium falciparum infection in Ghanaian children. Hum Immunol. 2011;72(10):881–8. doi:.https://doi.org/10.1016/j.humimm.2011.06.007
  133. Gilbert SC, Plebanski M, Gupta S, Morris J, Cox M, Aidoo M, et al. Association of malaria parasite population structure, HLA, and immunological antagonism. Science. 1998;279(5354):1173–7. doi:.https://doi.org/10.1126/science.279.5354.1173
  134. Laval G, Peyrégne S, Zidane N, Harmant C, Renaud F, Patin E, et al. Recent adaptive acquisition by African rainforest hunter-gatherers of the late pleistocene sickle-cell mutation suggests past differences in malaria exposure. Am J Hum Genet. 2019;104(3):553–61. doi:.https://doi.org/10.1016/j.ajhg.2019.02.007
  135. Schrider DR, Kern AD. Soft sweeps are the dominant mode of adaptation in the human genome. Mol Biol Evol. 2017;34(8):1863–77. doi:.https://doi.org/10.1093/molbev/msx154
  136. Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol. 2010;20(4):R208–15. doi:.https://doi.org/10.1016/j.cub.2009.11.055
  137. Goeury T, Creary LE, Brunet L, Galan M, Pasquier M, Kervaire B, et al. Deciphering the fine nucleotide diversity of full HLA class I and class II genes in a well-documented population from sub-Saharan Africa. HLA. 2018;91(1):36–51. doi:.https://doi.org/10.1111/tan.13180
  138. Norman PJ, Hollenbach JA, Nemat-Gorgani N, Guethlein LA, Hilton HG, Pando MJ, et al. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet. 2013;9(10):e1003938. doi:.https://doi.org/10.1371/journal.pgen.1003938
  139. Lima-Junior JC, Pratt-Riccio LR. Major Histocompatibility Complex and malaria: focus on Plasmodium vivax infection. Front Immunol. 2016;7:13. doi:.https://doi.org/10.3389/fimmu.2016.00013
  140. Crosslin DR, Carrell DS, Burt A, Kim DS, Underwood JG, Hanna DS, et al. Genetic variation in the HLA region is associated with susceptibility to herpes zoster. Genes Immun. 2015;16(1):1–7. doi:.https://doi.org/10.1038/gene.2014.51
  141. Stanaway IB, Hall TO, Rosenthal EA, Palmer M, Naranbhai V, Knevel R, et al.; eMERGE Network. The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype. Genet Epidemiol. 2019;43(1):63–81.
  142. Chen D, McKay JD, Clifford G, Gaborieau V, Chabrier A, Waterboer T, et al. Genome-wide association study of HPV seropositivity. Hum Mol Genet. 2011;20(23):4714–23. doi:.https://doi.org/10.1093/hmg/ddr383
  143. Dunstan SJ, Hue NT, Han B, Li Z, Tram TT, Sim KS, et al. Variation at HLA-DRB1 is associated with resistance to enteric fever. Nat Genet. 2014;46(12):1333–6. doi:.https://doi.org/10.1038/ng.3143
  144. DeLorenze GN, Nelson CL, Scott WK, Allen AS, Ray GT, Tsai AL, et al. Polymorphisms in HLA Class II genes are associated with susceptibility to Staphylococcus aureus infection in a white population. J Infect Dis. 2016;213(5):816–23. doi:.https://doi.org/10.1093/infdis/jiv483
  145. Fakiola M, Strange A, Cordell HJ, Miller EN, Pirinen M, Su Z, et al.; LeishGEN Consortium; Wellcome Trust Case Control Consortium 2. Common variants in the HLA-DRB1-HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Nat Genet. 2013;45(2):208–13. doi:.https://doi.org/10.1038/ng.2518
  146. Blackwell JM, Fakiola M, Castellucci LC. Human genetics of leishmania infections. Hum Genet. 2020. doi:.https://doi.org/10.1007/s00439-020-02130-w
  147. Singh T, Fakiola M, Oommen J, Singh AP, Singh AK, Smith N, et al. Epitope-Binding characteristics for risk versus protective DRB1 alleles for visceral leishmaniasis. J Immunol. 2018;200(8):2727–37. doi:.https://doi.org/10.4049/jimmunol.1701764
  148. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–61. doi:.https://doi.org/10.1093/nar/gkx1098
  149. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11. doi:.https://doi.org/10.1093/nar/29.1.308
  150. Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and immune regulation: how do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis C virus infections? Front Immunol. 2017;8:832. doi:.https://doi.org/10.3389/fimmu.2017.00832
  151. Robinson J, Guethlein LA, Cereb N, Yang SY, Norman PJ, Marsh SGE, et al. Distinguishing functional polymorphism from random variation in the sequences of >10,000 HLA-A, -B and -C alleles. PLoS Genet. 2017;13(6):e1006862. doi:.https://doi.org/10.1371/journal.pgen.1006862
  152. Sanchez-Mazas A, Meyer D. The relevance of HLA sequencing in population genetics studies. J Immunol Res. 2014;2014:971818. doi:.https://doi.org/10.1155/2014/971818
  153. Meyer D, Nunes K. HLA imputation, what is it good for? Hum Immunol. 2017;78(3):239–41. doi:.https://doi.org/10.1016/j.humimm.2017.02.007
  154. Cullen M, Noble J, Erlich H, Thorpe K, Beck S, Klitz W, et al. Characterization of recombination in the HLA class II region. Am J Hum Genet. 1997;60(2):397–407.
  155. Cullen M, Perfetto SP, Klitz W, Nelson G, Carrington M. High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am J Hum Genet. 2002;71(4):759–76. doi:.https://doi.org/10.1086/342973
  156. Sanchez-Mazas A, Djoulah S, Busson M, Le Monnier de Gouville I, Poirier JC, Dehay C, et al. A linkage disequilibrium map of the MHC region based on the analysis of 14 loci haplotypes in 50 French families. Eur J Hum Genet. 2000;8(1):33–41. doi:.https://doi.org/10.1038/sj.ejhg.5200391
  157. Bugawan TL, Klitz W, Blair A, Erlich HA. High-resolution HLA class I typing in the CEPH families: analysis of linkage disequilibrium among HLA loci. Tissue Antigens. 2000;56(5):392–404. doi:.https://doi.org/10.1034/j.1399-0039.2000.560502.x
  158. Achour Y, Ben Hamad M, Chaabane S, Rebai A, Marzouk S, Mahfoudh N, et al. Analysis of two susceptibility SNPs in HLA region and evidence of interaction between rs6457617 in HLA-DQB1 and HLA-DRB1*04 locus on Tunisian rheumatoid arthritis. J Genet. 2017;96(6):911–8. doi:.https://doi.org/10.1007/s12041-017-0855-y
  159. Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S, et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet. 2015;47(9):1085–90. doi:.https://doi.org/10.1038/ng.3379
  160. Goudey B, Abraham G, Kikianty E, Wang Q, Rawlinson D, Shi F, et al. Interactions within the MHC contribute to the genetic architecture of celiac disease. PLoS One. 2017;12(3):e0172826. doi:.https://doi.org/10.1371/journal.pone.0172826
  161. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet. 2006;38(10):1166–72. doi:.https://doi.org/10.1038/ng1885
  162. Gonzalez-Galarza FF, McCabe A, Santos EJMD, Jones J, Takeshita L, Ortega-Rivera ND, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 2019;gkz1029. doi:.https://doi.org/10.1093/nar/gkz1029
  163. Singh R, Kaul R, Kaul A, Khan K. A comparative review of HLA associations with hepatitis B and C viral infections across global populations. World J Gastroenterol. 2007;13(12):1770–87. doi:.https://doi.org/10.3748/wjg.v13.i12.1770
  164. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al., 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi:.https://doi.org/10.1038/nature15393
  165. Tshabalala M, Mellet J, Pepper MS. Human Leukocyte Antigen Diversity: A Southern African Perspective. J Immunol Res. 2015;2015:746151. doi:.https://doi.org/10.1155/2015/746151
  166. Ndiaye Diallo R, Gadji M, Hennig BJ, Gueye MV, Gaye A, Diop JPD, et al. Strengthening human genetics research in Africa: report of the 9th meeting of the African Society of Human Genetics in Dakar in May 2016. Glob Health Epidemiol Genom. 2017. 2: p. e10.DOI: https://doi.org/10.1017/gheg.2017.3.
  167. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177(1):26–31. doi:.https://doi.org/10.1016/j.cell.2019.02.048
  168. Ramsay M. Africa: continent of genome contrasts with implications for biomedical research and health. FEBS Lett. 2012;586(18):2813–9. doi:.https://doi.org/10.1016/j.febslet.2012.07.061
  169. McDougall I, Brown FH, Fleagle JG. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature. 2005;433(7027):733–6. doi:.https://doi.org/10.1038/nature03258
  170. Hublin J-J, Ben-Ncer A, Bailey SE, Freidline SE, Neubauer S, Skinner MM, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature. 2017;546(7657):289–92. doi:.. Correction in: Nature. 2018;70(141):986 https://doi.org/10.1038/nature22336
  171. Meyer D, Single RM, Mack SJ, Erlich HA, Thomson G. Signatures of demographic history and natural selection in the human major histocompatibility complex Loci. Genetics. 2006;173(4):2121–42. doi:.https://doi.org/10.1534/genetics.105.052837
  172. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77(2):171–92. doi:.https://doi.org/10.1086/432519
  173. Mangano VD, Modiano D. An evolutionary perspective of how infection drives human genome diversity: the case of malaria. Curr Opin Immunol. 2014;30:39–47. doi:.https://doi.org/10.1016/j.coi.2014.06.004
  174. Marquet S. Overview of human genetic susceptibility to malaria: From parasitemia control to severe disease. Infect Genet Evol. 2018;66:399–409. doi:.https://doi.org/10.1016/j.meegid.2017.06.001
  175. Slade RW, McCallum HI. Overdominant vs. frequency-dependent selection at MHC loci. Genetics. 1992;132(3):861–4.
  176. Ansari MA, Pedergnana V, L C Ip C, Magri A, Von Delft A, Bonsall D, et al.; STOP-HCV Consortium. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat Genet. 2017;49(5):666–73. doi:.https://doi.org/10.1038/ng.3835
  177. Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A, et al. Timing the ancestor of the HIV-1 pandemic strains. Science. 2000;288(5472):1789–96. doi:.https://doi.org/10.1126/science.288.5472.1789
  178. Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, et al. The early spread and epidemic ignition of HIV-1 in human populations. Science. 2014;346(6205):56–61. doi:.https://doi.org/10.1126/science.1256739
  179. Karlsson EK, Kwiatkowski DP, Sabeti PC. Natural selection and infectious disease in human populations. Nat Rev Genet. 2014;15(6):379–93. doi:.https://doi.org/10.1038/nrg3734
  180. Andrés AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, et al. Targets of balancing selection in the human genome. Mol Biol Evol. 2009;26(12):2755–64. doi:.https://doi.org/10.1093/molbev/msp190
  181. Penman BS, Gupta S. Detecting signatures of past pathogen selection on human HLA loci: are there needles in the haystack? Parasitology. 2018;145(6):731–9. doi:.https://doi.org/10.1017/S0031182017001159
  182. Currat M, Poloni ES, Sanchez-Mazas A. Human genetic differentiation across the Strait of Gibraltar. BMC Evol Biol. 2010;10(1):237. doi:.https://doi.org/10.1186/1471-2148-10-237
  183. Di D, Sanchez-Mazas A, Currat M. Computer simulation of human leukocyte antigen genes supports two main routes of colonization by human populations in East Asia. BMC Evol Biol. 2015;15(1):240. doi:.https://doi.org/10.1186/s12862-015-0512-0
  184. Dos Santos Francisco R, Buhler S, Nunes JM, Bitarello BD, França GS, Meyer D, et al. HLA supertype variation across populations: new insights into the role of natural selection in the evolution of HLA-A and HLA-B polymorphisms. Immunogenetics. 2015;67(11-12):651–63. doi:.https://doi.org/10.1007/s00251-015-0875-9