Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 150 No. 0708 (2020)

Identifying cancer driver genes from functional genomics screens

  • Trupti Togar
  • Sanket Desai
  • Rohit Mishra
  • Prachi Terwadkar
  • Manoj Ramteke
  • Malika Ranjan
  • Dhananjay Kawle
  • Bikram Sahoo
  • Ankita Pal
  • Pawan Upadhyay
  • Amit Dutt
DOI
https://doi.org/10.4414/smw.2020.20195
Cite this as:
Swiss Med Wkly. 2020;150:w20195
Published
21.02.2020

Summary

With the emerging advances made in genomics and functional genomics approaches, there is a critical and growing unmet need to integrate plural datasets in order to identify driver genes in cancer. An integrative approach, with the convergence of multiple types of genetic evidence, can limit false positives through a posterior filtering strategy and reduce the need for multiple hypothesis testing to identify true cancer vulnerabilities. We performed a pooled shRNA screen against 906 human genes in the oral cancer cell line AW13516 in triplicate. The genes that were depleted in the screen were integrated with copy number alteration and gene expression data and ranked based on ROAST analysis, using an integrative scoring system, DepRanker, to compute a Rank Impact Score (RIS) for each gene. The RIS-based ranking of candidate driver genes was used to identify the putative oncogenes AURKB and TK1 as essential for oral cancer cell proliferation. We validated the findings, showing that shRNA mediated genetic knockdown of TK1 or pharmacological inhibition of AURKB by AZD-1152 HQPA in AW13516 cells could significantly impede their proliferation. Next we analysed alterations in AURKB and TK1 genes in head and neck cancer and their association with prognosis using data on 528 patients obtained from TCGA. Patients harbouring alterations in AURKB and TK1 genes were associated with poor survival. To summarise, we present DepRanker as a simple yet robust package with no third-party dependencies for the identification of potential driver genes from a pooled shRNA functional genomic screen by integrating results from RNAi screens with gene expression and copy number data. Using DepRanker, we identify AURKB and TK1 as potential therapeutic targets in oral cancer. DepRanker is in the public domain and available for download at http://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html.

References

  1. Sadikovic B, Al-Romaih K, Squire JA, Zielenska M. Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics. 2008;9(6):394–408. doi:.https://doi.org/10.2174/138920208785699580
  2. Weinstein IB, Joe A, Felsher D. Oncogene addiction. Cancer Res. 2008;68(9):3077–80, discussion 3080. doi:.https://doi.org/10.1158/0008-5472.CAN-07-3293
  3. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:357027. doi:.https://doi.org/10.1155/2014/357027
  4. Smith J. Erlotinib: small-molecule targeted therapy in the treatment of non-small-cell lung cancer. Clin Ther. 2005;27(10):1513–34. doi:.https://doi.org/10.1016/j.clinthera.2005.10.014
  5. Campeau E, Gobeil S. RNA interference in mammals: behind the screen. Brief Funct Genomics. 2011;10(4):215–26. doi:.https://doi.org/10.1093/bfgp/elr018
  6. Dai Z, Sheridan JM, Gearing LJ, Moore DL, Su S, Wormald S, et al. edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens. F1000 Res. 2014;3:95. doi:.https://doi.org/10.12688/f1000research.3928.2
  7. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X, et al. Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA. 2008;105(51):20380–5. doi:.https://doi.org/10.1073/pnas.0810485105
  8. König R, Chiang CY, Tu BP, Yan SF, DeJesus PD, Romero A, et al. A probability-based approach for the analysis of large-scale RNAi screens. Nat Methods. 2007;4(10):847–9. doi:.https://doi.org/10.1038/nmeth1089
  9. Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, Smyth GK. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics. 2010;26(17):2176–82. doi:.https://doi.org/10.1093/bioinformatics/btq401
  10. Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;40(17):e133. doi:.https://doi.org/10.1093/nar/gks461
  11. McFarland JM, Ho ZV, Kugener G, Dempster JM, Montgomery PG, Bryan JG, et al. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat Commun. 2018;9(1):4610. doi:.https://doi.org/10.1038/s41467-018-06916-5
  12. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a Cancer Dependency Map. Cell. 2017;170(3):564–576.e16. doi:.https://doi.org/10.1016/j.cell.2017.06.010
  13. Guan Y, Li T, Zhang H, Zhu F, Omenn GS. Prioritizing predictive biomarkers for gene essentiality in cancer cells with mRNA expression data and DNA copy number profile. Bioinformatics. 2018;34(23):3975–82. doi:.https://doi.org/10.1093/bioinformatics/bty467
  14. Chandrani P, Upadhyay P, Iyer P, Tanna M, Shetty M, Raghuram GV, et al. Integrated genomics approach to identify biologically relevant alterations in fewer samples. BMC Genomics. 2015;16(1):936. doi:.https://doi.org/10.1186/s12864-015-2138-4
  15. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. doi:.https://doi.org/10.1126/scisignal.2004088
  16. Dar AA, Goff LW, Majid S, Berlin J, El-Rifai W. Aurora kinase inhibitors--rising stars in cancer therapeutics? Mol Cancer Ther. 2010;9(2):268–78. doi:.https://doi.org/10.1158/1535-7163.MCT-09-0765
  17. González-Loyola A, Fernández-Miranda G, Trakala M, Partida D, Samejima K, Ogawa H, et al. Aurora B Overexpression Causes Aneuploidy and p21Cip1 Repression during Tumor Development. Mol Cell Biol. 2015;35(20):3566–78. doi:.https://doi.org/10.1128/MCB.01286-14
  18. Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers. Oncotarget. 2017;8(14):23937–54. doi:.https://doi.org/10.18632/oncotarget.14893
  19. Gully CP, Velazquez-Torres G, Shin JH, Fuentes-Mattei E, Wang E, Carlock C, et al. Aurora B kinase phosphorylates and instigates degradation of p53. Proc Natl Acad Sci USA. 2012;109(24):E1513–22. doi:.https://doi.org/10.1073/pnas.1110287109
  20. Tao Y, Zhang P, Girdler F, Frascogna V, Castedo M, Bourhis J, et al. Enhancement of radiation response in p53-deficient cancer cells by the Aurora-B kinase inhibitor AZD1152. Oncogene. 2008;27(23):3244–55. doi:.https://doi.org/10.1038/sj.onc.1210990
  21. Ha GH, Breuer EK. Mitotic Kinases and p53 Signaling. Biochem Res Int. 2012;2012:195903. doi:.https://doi.org/10.1155/2012/195903
  22. Bagegni N, Thomas S, Liu N, Luo J, Hoog J, Northfelt DW, et al. Serum thymidine kinase 1 activity as a pharmacodynamic marker of cyclin-dependent kinase 4/6 inhibition in patients with early-stage breast cancer receiving neoadjuvant palbociclib. Breast Cancer Res. 2017;19(1):123. doi:.https://doi.org/10.1186/s13058-017-0913-7
  23. Ning S, Wei W, Li J, Hou B, Zhong J, Xie Y, et al. Clinical significance and diagnostic capacity of serum TK1, CEA, CA 19-9 and CA 72-4 levels in gastric and colorectal cancer patients. J Cancer. 2018;9(3):494–501. doi:.https://doi.org/10.7150/jca.21562
  24. Zhou J, He E, Skog S. The proliferation marker thymidine kinase 1 in clinical use. Mol Clin Oncol. 2013;1(1):18–28. doi:.https://doi.org/10.3892/mco.2012.19
  25. Schaefer C, Mallela N, Seggewiß J, Lechtape B, Omran H, Dirksen U, et al. Target discovery screens using pooled shRNA libraries and next-generation sequencing: A model workflow and analytical algorithm. PLoS One. 2018;13(1):e0191570. doi:.https://doi.org/10.1371/journal.pone.0191570
  26. Fellmann C, Lowe SW. Stable RNA interference rules for silencing. Nat Cell Biol. 2014;16(1):10–8. doi:.https://doi.org/10.1038/ncb2895
  27. Dempster JM, Pacini C, Pantel S, Behan FM, Green T, Krill-Burger J, et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nat Commun. 2019;10(1):5817. doi:.https://doi.org/10.1038/s41467-019-13805-y
  28. Shao DD, Tsherniak A, Gopal S, Weir BA, Tamayo P, Stransky N, et al. ATARiS: computational quantification of gene suppression phenotypes from multisample RNAi screens. Genome Res. 2013;23(4):665–78. doi:.https://doi.org/10.1101/gr.143586.112
  29. Moser R, Xu C, Kao M, Annis J, Lerma LA, Schaupp CM, et al. Functional kinomics identifies candidate therapeutic targets in head and neck cancer. Clin Cancer Res. 2014;20(16):4274–88. doi:.https://doi.org/10.1158/1078-0432.CCR-13-2858
  30. Smith SL, Bowers NL, Betticher DC, Gautschi O, Ratschiller D, Hoban PR, et al. Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer. 2005;93(6):719–29. doi:.https://doi.org/10.1038/sj.bjc.6602779
  31. Hegyi K, Egervári K, Sándor Z, Méhes G. Aurora kinase B expression in breast carcinoma: cell kinetic and genetic aspects. Pathobiology. 2012;79(6):314–22. doi:.https://doi.org/10.1159/000338082
  32. Mehra R, Serebriiskii IG, Burtness B, Astsaturov I, Golemis EA. Aurora kinases in head and neck cancer. Lancet Oncol. 2013;14(10):e425–35. doi:.https://doi.org/10.1016/S1470-2045(13)70128-1
  33. Boeckx C, Op de Beeck K, Wouters A, Deschoolmeester V, Limame R, Zwaenepoel K, et al. Overcoming cetuximab resistance in HNSCC: the role of AURKB and DUSP proteins. Cancer Lett. 2014;354(2):365–77. doi:.https://doi.org/10.1016/j.canlet.2014.08.039
  34. Falchook GS, Bastida CC, Kurzrock R. Aurora Kinase Inhibitors in Oncology Clinical Trials: Current State of the Progress. Semin Oncol. 2015;42(6):832–48. doi:.https://doi.org/10.1053/j.seminoncol.2015.09.022
  35. Chen Y, Ying M, Chen Y, Hu M, Lin Y, Chen D, et al. Serum thymidine kinase 1 correlates to clinical stages and clinical reactions and monitors the outcome of therapy of 1,247 cancer patients in routine clinical settings. Int J Clin Oncol. 2010;15(4):359–68. doi:.https://doi.org/10.1007/s10147-010-0067-4
  36. Upadhyay P, Gardi N, Desai S, Chandrani P, Joshi A, Dharavath B, et al. Genomic characterization of tobacco/nut chewing HPV-negative early stage tongue tumors identify MMP10 asa candidate to predict metastases. Oral Oncol. 2017;73:56–64. doi:.https://doi.org/10.1016/j.oraloncology.2017.08.003