Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 150 No. 0506 (2020)

Importance of osteocyte-mediated regulation of bone remodelling in inflammatory bone disease

  • Johanna Intemann
  • David J.J De Gorter
  • Amy J Naylor
  • Berno Dankbar
  • Corinna Wehmeyer
DOI
https://doi.org/10.4414/smw.2020.20187
Cite this as:
Swiss Med Wkly. 2020;150:w20187
Published
07.02.2020

Summary

Although the impact of osteoblast-osteoclast crosstalk in bone remodelling has been intensively studied, the importance of osteocytes, descendants of osteoblasts, in this process has for a long time been neglected. During their embedding phase, osteocytes undergo considerable phenotypic transformation, from a cuboidal, highly metabolically active osteoblast secreting extracellular matrix to a small, stellate, quiescent osteocyte with numerous long dendrites. Osteocytes are encysted in cavities (lacunae) and their dendritic extensions are located in tunnels (canaliculi) forming a remarkable, highly branched, lacunar-canalicular signalling network that spans the entire bone matrix. Osteocytes and their dendrites can communicate directly with each other and through the release of effector proteins such as sclerostin and nuclear factor κB ligand (RANKL), influence osteoblast and osteoclast formation. This allows osteocytes embedded within the bone matrix to communicate and coordinate activity of cells on the bone surface to adapt to mechanical needs and hormonal changes.

Besides their importance in sustaining physiological bone homeostasis, accumulating evidence suggests that dysregulated osteocyte function and alterations in the osteocyte lacunar-canalicular network structure are characteristics of skeletal diseases.

This review highlights some aspects of osteocyte communication with osteoclasts and mesenchymal stromal cells, the importance of blood vessel-osteocyte interaction and describes central functions of these cells in rheumatoid arthritis, osteoarthritis, osteomyelitis and osteoporosis. Within the last decade new technologies and tools have facilitated the study of osteocyte biology and the search for therapeutic targets to address bone fragility in the near future.

References

  1. Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994;55(3):273–86. doi:.https://doi.org/10.1002/jcb.240550303
  2. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.
  3. Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481. doi:.https://doi.org/10.1038/bonekey.2013.215
  4. Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010;19(2):329–44. doi:.https://doi.org/10.1016/j.devcel.2010.07.010
  5. Burr DB, Schaffler MB, Frederickson RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech. 1988;21(11):939–45. doi:.https://doi.org/10.1016/0021-9290(88)90132-7
  6. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell... and more. Endocr Rev. 2013;34(5):658–90. doi:.https://doi.org/10.1210/er.2012-1026
  7. Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jähn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27(5):1018–29. doi:.https://doi.org/10.1002/jbmr.1567
  8. Tsourdi E, Jähn K, Rauner M, Busse B, Bonewald LF. Physiological and pathological osteocytic osteolysis. J Musculoskelet Neuronal Interact. 2018;18(3):292–303.
  9. Jähn K, Kelkar S, Zhao H, Xie Y, Tiede-Lewis LM, Dusevich V, et al. Osteocytes Acidify Their Microenvironment in Response to PTHrP In Vitro and in Lactating Mice In Vivo. J Bone Miner Res. 2017;32(8):1761–72. doi:.https://doi.org/10.1002/jbmr.3167
  10. Beno T, Yoon YJ, Cowin SC, Fritton SP. Estimation of bone permeability using accurate microstructural measurements. J Biomech. 2006;39(13):2378–87. doi:.https://doi.org/10.1016/j.jbiomech.2005.08.005
  11. Su M, Jiang H, Zhang P, Liu Y, Wang E, Hsu A, et al. Knee-loading modality drives molecular transport in mouse femur. Ann Biomed Eng. 2006;34(10):1600–6. doi:.https://doi.org/10.1007/s10439-006-9171-z
  12. Palumbo C, Palazzini S, Marotti G. Morphological study of intercellular junctions during osteocyte differentiation. Bone. 1990;11(6):401–6. doi:.https://doi.org/10.1016/8756-3282(90)90134-K
  13. Kodama H, Nose M, Niida S, Yamasaki A. Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J Exp Med. 1991;173(5):1291–4. doi:.https://doi.org/10.1084/jem.173.5.1291
  14. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76. doi:.https://doi.org/10.1016/S0092-8674(00)81569-X
  15. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19. doi:.https://doi.org/10.1016/S0092-8674(00)80209-3
  16. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49. doi:.https://doi.org/10.1038/nrg1122
  17. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345(6274):442–4. doi:.https://doi.org/10.1038/345442a0
  18. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83(1):64–76. doi:.https://doi.org/10.1016/j.ajhg.2008.06.015
  19. Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253(2):395–400. doi:.https://doi.org/10.1006/bbrc.1998.9788
  20. Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960–2. doi:.https://doi.org/10.1038/ng2076
  21. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. doi:.https://doi.org/10.1038/nrendo.2013.137
  22. Zhao S, Kato Y, Zhang Y, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17(11):2068–79. doi:.https://doi.org/10.1359/jbmr.2002.17.11.2068
  23. Harris SE, MacDougall M, Horn D, Woodruff K, Zimmer SN, Rebel VI, et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone. 2012;50(1):42–53. doi:.https://doi.org/10.1016/j.bone.2011.09.038
  24. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. doi:.https://doi.org/10.1038/nm.2452
  25. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41. doi:.https://doi.org/10.1038/nm.2448
  26. Hofbauer LC. Pathophysiology of RANK ligand (RANKL) and osteoprotegerin (OPG). Ann Endocrinol (Paris). 2006;67(2):139–41. doi:.https://doi.org/10.1016/S0003-4266(06)72569-0
  27. Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res. 2012;18(2):326–35. doi:.https://doi.org/10.1158/1078-0432.CCR-10-2507
  28. Dougall WC, Holen I, González Suárez E. Targeting RANKL in metastasis. Bonekey Rep. 2014;3:519. doi:.https://doi.org/10.1038/bonekey.2014.14
  29. Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol. 2005;5(6):618–25. doi:.https://doi.org/10.1016/j.coph.2005.06.005
  30. Ikeda T, Utsuyama M, Hirokawa K. Expression profiles of receptor activator of nuclear factor kappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones. J Bone Miner Res. 2001;16(8):1416–25. doi:.https://doi.org/10.1359/jbmr.2001.16.8.1416
  31. Teitelbaum SL. The osteoclast and its unique cytoskeleton. Ann N Y Acad Sci. 2011;1240(1):14–7. doi:.https://doi.org/10.1111/j.1749-6632.2011.06283.x
  32. Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem. 1986;261(27):12665–74.
  33. Oreffo RO, Mundy GR, Seyedin SM, Bonewald LF. Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun. 1989;158(3):817–23. doi:.https://doi.org/10.1016/0006-291X(89)92795-2
  34. Oursler MJ. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. J Bone Miner Res. 1994;9(4):443–52. doi:.https://doi.org/10.1002/jbmr.5650090402
  35. Pfeilschifter J, Diel I, Scheppach B, Bretz A, Krempien R, Erdmann J, et al. Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume. J Bone Miner Res. 1998;13(4):716–30. doi:.https://doi.org/10.1359/jbmr.1998.13.4.716
  36. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65. doi:.https://doi.org/10.1038/nm.1979
  37. Clark WD, Smith EL, Linn KA, Paul-Murphy JR, Muir P, Cook ME. Osteocyte apoptosis and osteoclast presence in chicken radii 0-4 days following osteotomy. Calcif Tissue Int. 2005;77(5):327–36. doi:.https://doi.org/10.1007/s00223-005-0074-z
  38. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21(4):605–15. doi:.https://doi.org/10.1359/jbmr.060107
  39. Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A, You L. Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem. 2011;112(9):2412–23. doi:.https://doi.org/10.1002/jcb.23164
  40. Kennedy OD, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo. Bone. 2014;64:132–7. doi:.https://doi.org/10.1016/j.bone.2014.03.049
  41. Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, et al. Osteocyte Apoptosis Caused by Hindlimb Unloading is Required to Trigger Osteocyte RANKL Production and Subsequent Resorption of Cortical and Trabecular Bone in Mice Femurs. J Bone Miner Res. 2016;31(7):1356–65. doi:.https://doi.org/10.1002/jbmr.2807
  42. Plotkin LI, Gortazar AR, Davis HM, Condon KW, Gabilondo H, Maycas M, et al. Inhibition of osteocyte apoptosis prevents the increase in osteocytic receptor activator of nuclear factor κB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloading. J Biol Chem. 2015;290(31):18934–42. doi:.https://doi.org/10.1074/jbc.M115.642090
  43. Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res. 2012;27(2):374–89. doi:.https://doi.org/10.1002/jbmr.548
  44. Joeng KS, Lee YC, Lim J, Chen Y, Jiang MM, Munivez E, et al. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest. 2017;127(7):2678–88. doi:.https://doi.org/10.1172/JCI92617
  45. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006;39(4):754–66. doi:.https://doi.org/10.1016/j.bone.2006.03.017
  46. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76. doi:.https://doi.org/10.1093/emboj/cdg599
  47. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7. doi:.https://doi.org/10.1074/jbc.M413274200
  48. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al.; International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5. doi:.https://doi.org/10.1080/14653240500319234
  49. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. doi:.https://doi.org/10.1080/14653240600855905
  50. Heino TJ, Hentunen TA, Väänänen HK. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res. 2004;294(2):458–68. doi:.https://doi.org/10.1016/j.yexcr.2003.11.016
  51. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater. 2012;23:13–27. doi:.https://doi.org/10.22203/eCM.v023a02
  52. Fairfield H, Falank C, Harris E, Demambro V, McDonald M, Pettitt JA, et al. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol. 2018;233(2):1156–67. doi:.https://doi.org/10.1002/jcp.25976
  53. Matsuo K, Kuroda Y, Nango N, Shimoda K, Kubota Y, Ema M, et al. Osteogenic capillaries orchestrate growth plate-independent ossification of the malleus. Development. 2015;142(22):3912–20. doi:.https://doi.org/10.1242/dev.123885
  54. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–8. doi:.. Correction in: Nature. 2014;513:574. https://doi.org/10.1038/nature13145
  55. Langen UH, Pitulescu ME, Kim JM, Enriquez-Gasca R, Sivaraj KK, Kusumbe AP, et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat Cell Biol. 2017;19(3):189–201. doi:.https://doi.org/10.1038/ncb3476
  56. Ben Shoham A, Rot C, Stern T, Krief S, Akiva A, Dadosh T, et al. Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development. 2016;143(21):3933–43. doi:.https://doi.org/10.1242/dev.139253
  57. Prasadam I, Zhou Y, Du Z, Chen J, Crawford R, Xiao Y. Osteocyte-induced angiogenesis via VEGF-MAPK-dependent pathways in endothelial cells. Mol Cell Biochem. 2014;386(1-2):15–25. doi:.https://doi.org/10.1007/s11010-013-1840-2
  58. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1(2):236–50. doi:.https://doi.org/10.1038/s42255-018-0016-5
  59. Birukova AA, Zagranichnaya T, Fu P, Alekseeva E, Chen W, Jacobson JR, et al. Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Exp Cell Res. 2007;313(11):2504–20. doi:.https://doi.org/10.1016/j.yexcr.2007.03.036
  60. Pai R, Szabo IL, Soreghan BA, Atay S, Kawanaka H, Tarnawski AS. PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochem Biophys Res Commun. 2001;286(5):923–8. doi:.https://doi.org/10.1006/bbrc.2001.5494
  61. Werner D, Simon D, Englbrecht M, Stemmler F, Simon C, Berlin A, et al. Early Changes of the Cortical Micro-Channel System in the Bare Area of the Joints of Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2017;69(8):1580–7. doi:.https://doi.org/10.1002/art.40148
  62. Lafage-Proust MH, Roche B, Langer M, Cleret D, Vanden Bossche A, Olivier T, et al. Assessment of bone vascularization and its role in bone remodeling. Bonekey Rep. 2015;4:662. doi:.https://doi.org/10.1038/bonekey.2015.29
  63. Núñez JA, Goring A, Hesse E, Thurner PJ, Schneider P, Clarkin CE. Simultaneous visualisation of calcified bone microstructure and intracortical vasculature using synchrotron X-ray phase contrast-enhanced tomography. Sci Rep. 2017;7(1):13289. doi:.https://doi.org/10.1038/s41598-017-13632-5
  64. Greenbaum A, Chan KY, Dobreva T, Brown D, Balani DH, Boyce R, et al. Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci Transl Med. 2017;9(387):eaah6518. doi:.https://doi.org/10.1126/scitranslmed.aah6518
  65. Dallas SL, Bonewald LF. Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci. 2010;1192(1):437–43. doi:.https://doi.org/10.1111/j.1749-6632.2009.05246.x
  66. Pathak JL, Bravenboer N, Luyten FP, Verschueren P, Lems WF, Klein-Nulend J, et al. Mechanical loading reduces inflammation-induced human osteocyte-to-osteoclast communication. Calcif Tissue Int. 2015;97(2):169–78. doi:.https://doi.org/10.1007/s00223-015-9999-z
  67. Pathak JL, Bakker AD, Luyten FP, Verschueren P, Lems WF, Klein-Nulend J, et al. Systemic Inflammation Affects Human Osteocyte-Specific Protein and Cytokine Expression. Calcif Tissue Int. 2016;98(6):596–608. doi:.https://doi.org/10.1007/s00223-016-0116-8
  68. Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8(11):665–73. doi:.https://doi.org/10.1038/nrrheum.2012.130
  69. Henrotin Y, Pesesse L, Sanchez C. Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int. 2012;23(Suppl 8):847–51. doi:.https://doi.org/10.1007/s00198-012-2162-z
  70. Newberry WN, Zukosky DK, Haut RC. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage. J Orthop Res. 1997;15(3):450–5. doi:.https://doi.org/10.1002/jor.1100150319
  71. Knothe Tate ML, Adamson JR, Tami AE, Bauer TW. The osteocyte. Int J Biochem Cell Biol. 2004;36(1):1–8. doi:.https://doi.org/10.1016/S1357-2725(03)00241-3
  72. Jaiprakash A, Prasadam I, Feng JQ, Liu Y, Crawford R, Xiao Y. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis. Int J Biol Sci. 2012;8(3):406–17. doi:.https://doi.org/10.7150/ijbs.4221
  73. Staines KA, Ikpegbu E, Törnqvist AE, Dillon S, Javaheri B, Amin AK, et al. Conditional deletion of E11/podoplanin in bone protects against load-induced osteoarthritis. BMC Musculoskelet Disord. 2019;20(1):344. doi:.https://doi.org/10.1186/s12891-019-2731-9
  74. Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364(9431):369–79. doi:.https://doi.org/10.1016/S0140-6736(04)16727-5
  75. Horst SA, Hoerr V, Beineke A, Kreis C, Tuchscherr L, Kalinka J, et al. A novel mouse model of Staphylococcus aureus chronic osteomyelitis that closely mimics the human infection: an integrated view of disease pathogenesis. Am J Pathol. 2012;181(4):1206–14. doi:.https://doi.org/10.1016/j.ajpath.2012.07.005
  76. Bosse MJ, Gruber HE, Ramp WK. Internalization of bacteria by osteoblasts in a patient with recurrent, long-term osteomyelitis. A case report. J Bone Joint Surg Am. 2005;87(6):1343–7. doi:.https://doi.org/10.2106/00004623-200506000-00022
  77. Reilly SS, Hudson MC, Kellam JF, Ramp WK. In vivo internalization of Staphylococcus aureus by embryonic chick osteoblasts. Bone. 2000;26(1):63–70. doi:.https://doi.org/10.1016/S8756-3282(99)00239-2
  78. Trouillet-Assant S, Gallet M, Nauroy P, Rasigade JP, Flammier S, Parroche P, et al. Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis. 2015;211(4):571–81. doi:.https://doi.org/10.1093/infdis/jiu386
  79. Claro T, Widaa A, O’Seaghdha M, Miajlovic H, Foster TJ, O’Brien FJ, et al. Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One. 2011;6(4):e18748. doi:.https://doi.org/10.1371/journal.pone.0018748
  80. Sanchez CJ, Jr, Ward CL, Romano DR, Hurtgen BJ, Hardy SK, Woodbury RL, et al. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet Disord. 2013;14(1):187. doi:.https://doi.org/10.1186/1471-2474-14-187
  81. Widaa A, Claro T, Foster TJ, O’Brien FJ, Kerrigan SW. Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS One. 2012;7(7):e40586. doi:.https://doi.org/10.1371/journal.pone.0040586
  82. Somayaji SN, Ritchie S, Sahraei M, Marriott I, Hudson MC. Staphylococcus aureus induces expression of receptor activator of NF-kappaB ligand and prostaglandin E2 in infected murine osteoblasts. Infect Immun. 2008;76(11):5120–6. doi:.https://doi.org/10.1128/IAI.00228-08
  83. Kobayashi Y, Mizoguchi T, Take I, Kurihara S, Udagawa N, Takahashi N. Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1. J Biol Chem. 2005;280(12):11395–403. doi:.https://doi.org/10.1074/jbc.M411189200
  84. de Mesy Bentley KL, Trombetta R, Nishitani K, Bello-Irizarry SN, Ninomiya M, Zhang L, et al. Evidence of Staphylococcus Aureus Deformation, Proliferation, and Migration in Canaliculi of Live Cortical Bone in Murine Models of Osteomyelitis. J Bone Miner Res. 2017;32(5):985–90. doi:.https://doi.org/10.1002/jbmr.3055
  85. de Mesy Bentley KL, MacDonald A, Schwarz EM, Oh I. Chronic Osteomyelitis with Staphylococcus aureus Deformation in Submicron Canaliculi of Osteocytes: A Case Report. JBJS Case Connect. 2018;8(1):e8. doi:.https://doi.org/10.2106/JBJS.CC.17.00154
  86. Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82(9):3128–35. doi:.https://doi.org/10.1210/jc.82.9.3128
  87. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75. doi:.https://doi.org/10.1016/j.cmet.2007.05.001
  88. Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJ, Klein-Nulend J, et al. Round versus flat: bone cell morphology, elasticity, and mechanosensing. J Biomech. 2008;41(7):1590–8. doi:.https://doi.org/10.1016/j.jbiomech.2008.01.031
  89. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75. doi:.https://doi.org/10.1074/jbc.M705092200
  90. Price C, Zhou X, Li W, Wang L. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res. 2011;26(2):277–85. doi:.https://doi.org/10.1002/jbmr.211
  91. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995;9(5):441–5. doi:.https://doi.org/10.1096/fasebj.9.5.7896017
  92. You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone. 2008;42(1):172–9. doi:.https://doi.org/10.1016/j.bone.2007.09.047
  93. Ciani C, Sharma D, Doty SB, Fritton SP. Ovariectomy enhances mechanical load-induced solute transport around osteocytes in rat cancellous bone. Bone. 2014;59:229–34. doi:.https://doi.org/10.1016/j.bone.2013.11.026
  94. Sharma D, Ciani C, Marin PA, Levy JD, Doty SB, Fritton SP. Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone. 2012;51(3):488–97. doi:.https://doi.org/10.1016/j.bone.2012.05.014
  95. Ukon Y, Makino T, Kodama J, Tsukazaki H, Tateiwa D, Yoshikawa H, et al. Molecular-Based Treatment Strategies for Osteoporosis: A Literature Review. Int J Mol Sci. 2019;20(10):2557. doi:.https://doi.org/10.3390/ijms20102557
  96. Halasy-Nagy JM, Rodan GA, Reszka AA. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone. 2001;29(6):553–9. doi:.https://doi.org/10.1016/S8756-3282(01)00615-9
  97. Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases. 2011;2(3):117–30. doi:.https://doi.org/10.4161/sgtp.2.3.16453
  98. Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012;18(7):1095–101. doi:.https://doi.org/10.1038/nm.2793
  99. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med. 2016;375(16):1532–43. doi:.https://doi.org/10.1056/NEJMoa1607948
  100. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, et al. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N Engl J Med. 2017;377(15):1417–27. doi:.https://doi.org/10.1056/NEJMoa1708322
  101. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M. Proteomics characterization of extracellular space components in the human aorta. Mol Cell Proteomics. 2010;9(9):2048–62. doi:.https://doi.org/10.1074/mcp.M110.001693
  102. Brandenburg VM, Kramann R, Koos R, Krüger T, Schurgers L, Mühlenbruch G, et al. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrol. 2013;14(1):219. doi:.https://doi.org/10.1186/1471-2369-14-219
  103. Zhu D, Mackenzie NC, Millán JL, Farquharson C, MacRae VE. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One. 2011;6(5):e19595. doi:.https://doi.org/10.1371/journal.pone.0019595
  104. Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, et al. A Phase III Randomized Placebo-Controlled Trial to Evaluate Efficacy and Safety of Romosozumab in Men With Osteoporosis. J Clin Endocrinol Metab. 2018;103(9):3183–93. doi:.https://doi.org/10.1210/jc.2017-02163