Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 150 No. 0304 (2020)

Holistic cancer genome profiling for every patient

  • Serena Nik-Zainal
  • Yasin Memari
  • Helen R. Davies
DOI
https://doi.org/10.4414/smw.2020.20158
Cite this as:
Swiss Med Wkly. 2020;150:w20158
Published
13.01.2020

Summary

Technological advances in the ability to read the human genome have accelerated the speed of sequencing, such that today we can perform whole genome sequencing (WGS) in one day. Until recently, genomic studies have largely been limited to seeking novel scientific discoveries. The application of new insights gained through cancer WGS into the clinical domain, have been relatively limited. Looking ahead, a vast amount of data can be generated by genomic studies. Of note, excellent organisation of genomic and clinical data permits the application of machine-learning methods which can lead to the development of clinical algorithms that could assist future clinicians and genomicists in the analysis and interpretation of individual cancer genomes. Here, we describe what can be gleaned from holistic whole cancer genome profiling and argue that we must build the infrastructure and educational frameworks to support the modern clinical genomicist to prepare for a future where WGS will be the norm.

References

  1. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9. doi:.https://doi.org/10.1038/nature07517
  2. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al.; Breast Cancer Working Group of the International Cancer Genome Consortium. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):979–93. doi:.https://doi.org/10.1016/j.cell.2012.04.024
  3. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al.; Breast Cancer Working Group of the International Cancer Genome Consortium. The life history of 21 breast cancers. Cell. 2012;149(5):994–1007. doi:.https://doi.org/10.1016/j.cell.2012.04.023
  4. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al.; Oslo Breast Cancer Consortium (OSBREAC). The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4. doi:.https://doi.org/10.1038/nature11017
  5. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703–13. doi:.https://doi.org/10.1038/nm.4333
  6. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(7239):719–24. doi:.https://doi.org/10.1038/nature07943
  7. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13. doi:.https://doi.org/10.1126/science.1145720
  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi:.https://doi.org/10.1016/S0092-8674(00)81683-9
  9. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8. doi:.https://doi.org/10.1126/science.959840
  10. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501. doi:.https://doi.org/10.1038/nature12912
  11. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, et al., Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. doi:. Correction in: Nature. 2013;500:242 https://doi.org/10.1038/nature12113
  12. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi:.https://doi.org/10.1038/nature11252
  13. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. doi:.https://doi.org/10.1038/nature10166
  14. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25. doi:.https://doi.org/10.1038/nature11404
  15. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22. doi:.https://doi.org/10.1038/nature12965
  16. Tarpey PS, Behjati S, Cooke SL, Van Loo P, Wedge DC, Pillay N, et al. Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet. 2013;45(8):923–6. doi:.https://doi.org/10.1038/ng.2668
  17. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al.; Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95. doi:.https://doi.org/10.1056/NEJMoa1103283
  18. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al.; Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. doi:.https://doi.org/10.1038/nature12477
  19. Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15(9):585–98. doi:.https://doi.org/10.1038/nrg3729
  20. Kucab JE, Zou X, Morganella S, Joel M, Nanda AS, Nagy E, et al. A Compendium of Mutational Signatures of Environmental Agents. Cell. 2019;177(4):821–836.e16. doi:.https://doi.org/10.1016/j.cell.2019.03.001
  21. Zou X, Owusu M, Harris R, Jackson SP, Loizou JI, Nik-Zainal S. Validating the concept of mutational signatures with isogenic cell models. Nat Commun. 2018;9(1):1744. doi:.https://doi.org/10.1038/s41467-018-04052-8
  22. Alexandrov LB, Kim J, Haradhvala N, Huang NM, Ng AWT, Wu Y, et al. The Repertoire of Mutational Signatures in Human Cancer. Bioarkiv. 2018. Available at: https://doi.org/10.1101/322859.
  23. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54. doi:. Correction in: Nature. 2019;566:E1 https://doi.org/10.1038/nature17676
  24. Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet. 2018;50(9):1262–70. doi:.https://doi.org/10.1038/s41588-018-0179-8
  25. Tubio JMC, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M, et al.; ICGC Breast Cancer Group; ICGC Bone Cancer Group; ICGC Prostate Cancer Group. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014;345(6196):1251343. doi:.https://doi.org/10.1126/science.1251343
  26. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell. 2014;159(2):374–87. doi:.https://doi.org/10.1016/j.cell.2014.09.030
  27. Debruyne DN, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572(7771):676–80. doi:.https://doi.org/10.1038/s41586-019-1472-0
  28. Glodzik D, Morganella S, Davies H, Simpson PT, Li Y, Zou X, et al. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers. Nat Genet. 2017;49(3):341–8. doi:. Correction in: Nat Genet. 2017;49:1661 https://doi.org/10.1038/ng.3771
  29. Rheinbay E, Parasuraman P, Grimsby J, Tiao G, Engreitz JM, Kim J, et al. Recurrent and functional regulatory mutations in breast cancer. Nature. 2017;547(7661):55–60. doi:.https://doi.org/10.1038/nature22992
  30. Glodzik D, Purdie C, Rye IH, Simpson PT, Staaf J, Span PN, et al. Mutational mechanisms of amplifications revealed by analysis of clustered rearrangements in breast cancers. Ann Oncol. 2018;29(11):2223–31. doi:.https://doi.org/10.1093/annonc/mdy404
  31. Liu S, Kwon M, Mannino M, Yang N, Renda F, Khodjakov A, et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature. 2018;561(7724):551–5. doi:.https://doi.org/10.1038/s41586-018-0534-z
  32. Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al.; TRACERx consortium. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567(7749):479–85. doi:.https://doi.org/10.1038/s41586-019-1032-7
  33. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al.; TRACERx Consortium. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell. 2017;171(6):1259–1271.e11. doi:.https://doi.org/10.1016/j.cell.2017.10.001
  34. Foulkes WD, Knoppers BM, Turnbull C. Population genetic testing for cancer susceptibility: founder mutations to genomes. Nat Rev Clin Oncol. 2016;13(1):41–54. doi:.https://doi.org/10.1038/nrclinonc.2015.173
  35. Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP, Bolli N, et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat Genet. 2014;46(5):487–91. doi:.https://doi.org/10.1038/ng.2955
  36. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017;23(4):517–25. doi:.https://doi.org/10.1038/nm.4292
  37. Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet. 2019;ddz187. doi:.https://doi.org/10.1093/hmg/ddz187
  38. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi:.https://doi.org/10.1056/NEJMoa1113205
  39. Caravagna G, Giarratano Y, Ramazzotti D, Tomlinson I, Graham TA, Sanguinetti G, et al. Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat Methods. 2018;15(9):707–14. doi:.https://doi.org/10.1038/s41592-018-0108-x
  40. De Mattos-Arruda L, Sammut SJ, Ross EM, Bashford-Rogers R, Greenstein E, Markus H, et al. The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer. Cell Rep. 2019;27(9):2690–2708.e10. doi:.https://doi.org/10.1016/j.celrep.2019.04.098
  41. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014;11(4):396–8. doi:.https://doi.org/10.1038/nmeth.2883
  42. Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362(6417):911–7. doi:.https://doi.org/10.1126/science.aau3879
  43. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348(6237):880–6. doi:.https://doi.org/10.1126/science.aaa6806
  44. Tomasetti C, Vogelstein B, Parmigiani G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA. 2013;110(6):1999–2004. doi:.https://doi.org/10.1073/pnas.1221068110
  45. Yizhak K, Aguet F, Kim J, Hess JM, Kübler K, Grimsby J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 2019;364(6444):eaaw0726. doi:.https://doi.org/10.1126/science.aaw0726
  46. Domchek SM. Reversion Mutations with Clinical Use of PARP Inhibitors: Many Genes, Many Versions. Cancer Discov. 2017;7(9):937–9. doi:.https://doi.org/10.1158/2159-8290.CD-17-0734
  47. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al.; Australian Pancreatic Cancer Genome Initiative. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501. doi:.https://doi.org/10.1038/nature14169
  48. Campbell PJ, Getz G, Stuart JM, Korbel JO, Stein LD. Pan-cancer analysis of whole genomes. bioRxiv. 2017.
  49. Davies H, Morganella S, Purdie CA, Jang SJ, Borgen E, Russnes H, et al. Whole-Genome Sequencing Reveals Breast Cancers with Mismatch Repair Deficiency. Cancer Res. 2017;77(18):4755–62. doi:.https://doi.org/10.1158/0008-5472.CAN-17-1083
  50. Morganella S, Alexandrov LB, Glodzik D, Zou X, Davies H, Staaf J, et al. The topography of mutational processes in breast cancer genomes. Nat Commun. 2016;7(1):11383. doi:.https://doi.org/10.1038/ncomms11383
  51. Staaf J, Glodzik D, Bosch A, Vallon-Christersson J, Reuterswärd C, Häkkinen J, et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat Med. 2019;25(10):1526–33. doi:.https://doi.org/10.1038/s41591-019-0582-4
  52. Siva N. UK gears up to decode 100,000 genomes from NHS patients. Lancet. 2015;385(9963):103–4. doi:.https://doi.org/10.1016/S0140-6736(14)62453-3
  53. Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, et al. Pan-cancer whole genome analyses of metastatic solid tumors. Bioarkiv. 2019. Available at: https://doi.org/10.1101/415133.