Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 4748 (2019)

Vulnerability to relapse under stress: insights from affective neuroscience

  • Eva R. Pool
  • David Sander
DOI
https://doi.org/10.4414/smw.2019.20151
Cite this as:
Swiss Med Wkly. 2019;149:w20151
Published
29.11.2019

Summary

In this review article, we aim at analysing the role of stress in addiction and relapse. In order to do so, we first offer a summary of the findings from affective neuroscience trying to understand compulsive reward-seeking behaviours. These behaviours are characterised by an imbalance between the considerable amount of effort an individual is willing to mobilise to obtain a reward and the comparatively little pleasure that is felt once the reward is obtained and consumed.

We illustrate how the neuropsychological mechanisms underlying these behaviours might play an important role in substance addiction and in particular for stress-induced relapse. We then review evidence suggesting that a personalised health approach would be particularly beneficial in order to better understand the role of stress in addiction and relapse in humans. More specifically, observing individual differences during distinct forms of learning (Pavlovian, habitual and goal-directed learning) might represent a very promising way to identify risk profiles for compulsive reward-seeking behaviours, addiction, and vulnerabilities to relapse under stress.

References

  1. Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol. 2016;71(8):670–9. doi:.https://doi.org/10.1037/amp0000059
  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Arlington (VA): American Psychiatric Publishing; 2013.
  3. Everitt BJ, Robbins TW. Drug addiction: Updating actions to habits to compulsions ten years on. Annu Rev Psychol. 2016;67(1):23–50. doi:.https://doi.org/10.1146/annurev-psych-122414-033457
  4. Giuliano C, Peña-Oliver Y, Goodlett CR, Cardinal RN, Robbins TW, Bullmore ET, et al. Evidence for a long-lasting compulsive alcohol seeking phenotype in rats. Neuropsychopharmacology. 2018;43(4):728–38. doi:.https://doi.org/10.1038/npp.2017.105
  5. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. doi:.https://doi.org/10.1038/npp.2009.110
  6. Sinha R. Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci. 2008;1141(1):105–30. doi:.https://doi.org/10.1196/annals.1441.030
  7. Chen C-Y, O’Brien MS, Anthony JC. Who becomes cannabis dependent soon after onset of use? Epidemiological evidence from the United States: 2000-2001. Drug Alcohol Depend. 2005;79(1):11–22. doi:.https://doi.org/10.1016/j.drugalcdep.2004.11.014
  8. Everitt BJ, Robbins TW. Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol. 2016;67(1):23–50. doi:.https://doi.org/10.1146/annurev-psych-122414-033457
  9. Balleine BW, O’Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology. 2010;35(1):48–69. doi:.https://doi.org/10.1038/npp.2009.131
  10. Balleine B. Instrumental performance following a shift in primary motivation depends on incentive learning. J Exp Psychol Anim Behav Process. 1992;18(3):236–50. doi:.https://doi.org/10.1037/0097-7403.18.3.236
  11. Balleine BW, Dickinson A. Instrumental performance following reinforcer devaluation depends upon incentive learning. Q J Exp Psychol. 1991;43:279–96.
  12. Dayan P, Niv Y, Seymour B, Daw ND. The misbehavior of value and the discipline of the will. Neural Netw. 2006;19(8):1153–60. doi:.https://doi.org/10.1016/j.neunet.2006.03.002
  13. Dickinson A, Balleine B, Watt A, Gonzalez F, Boakes RA. Motivational control after extended instrumental training. Anim Learn Behav. 1995;23(2):197–206. doi:.https://doi.org/10.3758/BF03199935
  14. O’Doherty JP, Cockburn J, Pauli WM. Learning, reward, and decision making. Annu Rev Psychol. 2017;68(1):73–100. doi:.https://doi.org/10.1146/annurev-psych-010416-044216
  15. Rangel A. Regulation of dietary choice by the decision-making circuitry. Nat Neurosci. 2013;16(12):1717–24. doi:.https://doi.org/10.1038/nn.3561
  16. Stussi Y, Delplanque S, Coraj S, Pourtois G, Sander D. Measuring Pavlovian appetitive conditioning in humans with the postauricular reflex. Psychophysiology. 2018;55(8):e13073. doi:.https://doi.org/10.1111/psyp.13073
  17. Stussi Y, Pourtois G, Sander D. Enhanced Pavlovian aversive conditioning to positive emotional stimuli. J Exp Psychol Gen. 2018;147(6):905–23. doi:.https://doi.org/10.1037/xge0000424
  18. Pauli WM, Larsen T, Collette S, Tyszka JM, Seymour B, O’Doherty JP. Distinct contributions of ventromedial and dorsolateral subregions of the human substantia nigra to appetitive and aversive learning. J Neurosci. 2015;35(42):14220–33. doi:.https://doi.org/10.1523/JNEUROSCI.2277-15.2015
  19. Bray S, Rangel A, Shimojo S, Balleine B, O’Doherty JP. The neural mechanisms underlying the influence of pavlovian cues on human decision making. J Neurosci. 2008;28(22):5861–6. doi:.https://doi.org/10.1523/JNEUROSCI.0897-08.2008
  20. Prévost C, Liljeholm M, Tyszka JM, O’Doherty JP. Neural correlates of specific and general Pavlovian-to-Instrumental Transfer within human amygdalar subregions: a high-resolution fMRI study. J Neurosci. 2012;32(24):8383–90. doi:.https://doi.org/10.1523/JNEUROSCI.6237-11.2012
  21. Talmi D, Seymour B, Dayan P, Dolan RJ. Human pavlovian-instrumental transfer. J Neurosci. 2008;28(2):360–8. doi:.https://doi.org/10.1523/JNEUROSCI.4028-07.2008
  22. Trick L, Hogarth L, Duka T. Prediction and uncertainty in human Pavlovian to instrumental transfer. J Exp Psychol Learn Mem Cogn. 2011;37(3):757–65. doi:.https://doi.org/10.1037/a0022310
  23. Bucker B, Theeuwes J. Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. Vis Cogn. 2018;26(2):131–48. doi:.https://doi.org/10.1080/13506285.2017.1399948
  24. Pool E, Brosch T, Delplanque S, Sander D. Where is the chocolate? Rapid spatial orienting toward stimuli associated with primary rewards. Cognition. 2014;130(3):348–59. doi:.https://doi.org/10.1016/j.cognition.2013.12.002
  25. Bindra D. A motivational view of learning, performance, and behavior modification. Psychol Rev. 1974;81(3):199–213. doi:.https://doi.org/10.1037/h0036330
  26. Bolles RC. Reinforcement, expectancy, and learning. Psychol Rev. 1972;79(5):394–409. doi:.https://doi.org/10.1037/h0033120
  27. Toates F. The interaction of cognitive and stimulus-response processes in the control of behaviour. Neurosci Biobehav Rev. 1997;22(1):59–83. doi:.https://doi.org/10.1016/S0149-7634(97)00022-5
  28. Otto AR, Gershman SJ, Markman AB, Daw ND. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Psychol Sci. 2013;24(5):751–61. doi:.https://doi.org/10.1177/0956797612463080
  29. Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8(12):1704–11. doi:.https://doi.org/10.1038/nn1560
  30. Pauli WM, Cockburn J, Pool ER, Pérez OD, O’Doherty JP. Computational approaches to habits in a model-free world. Curr Opin Behav Sci. 2018;20:104–9. doi:.https://doi.org/10.1016/j.cobeha.2017.12.001
  31. Guitart-Masip M, Duzel E, Dolan R, Dayan P. Action versus valence in decision making. Trends Cogn Sci. 2014;18(4):194–202. doi:.https://doi.org/10.1016/j.tics.2014.01.003
  32. Guitart-Masip M, Huys QJM, Fuentemilla L, Dayan P, Duzel E, Dolan RJ. Go and no-go learning in reward and punishment: interactions between affect and effect. Neuroimage. 2012;62(1):154–66. doi:.https://doi.org/10.1016/j.neuroimage.2012.04.024
  33. Huys QJM, Cools R, Gölzer M, Friedel E, Heinz A, Dolan RJ, et al. Disentangling the roles of approach, activation and valence in instrumental and pavlovian responding. PLOS Comput Biol. 2011;7(4):e1002028. doi:. Correction in: PLOS Comput Biol. 2014;10(1): e619f5526. doi: https://doi.org/10.1371/journal.pcbi.1002028
  34. Lindström B, Golkar A, Olsson A. A clash of values: Fear-relevant stimuli can enhance or corrupt adaptive behavior through competition between Pavlovian and instrumental valuation systems. Emotion. 2015;15(5):668–76. doi:.https://doi.org/10.1037/emo0000075
  35. Robbins TW, Costa RM. Habits. Curr Biol. 2017;27(22):R1200–6. doi:.https://doi.org/10.1016/j.cub.2017.09.060
  36. Niv Y, Daw ND, Dayan P. Choice values. Nat Neurosci. 2006;9(8):987–8. doi:.https://doi.org/10.1038/nn0806-987
  37. Gläscher J, Daw N, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66(4):585–95. doi:.https://doi.org/10.1016/j.neuron.2010.04.016
  38. Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, et al. Toward a rational and mechanistic account of mental effort. Annu Rev Neurosci. 2017;40(1):99–124. doi:.https://doi.org/10.1146/annurev-neuro-072116-031526
  39. Botvinick M, Braver T. Motivation and cognitive control: from behavior to neural mechanism. Annu Rev Psychol. 2015;66(1):83–113. doi:.https://doi.org/10.1146/annurev-psych-010814-015044
  40. Kool W, McGuire JT, Wang GJ, Botvinick MM. Neural and behavioral evidence for an intrinsic cost of self-control. PLoS One. 2013;8(8):e72626. doi:.https://doi.org/10.1371/journal.pone.0072626
  41. Lieder F, Shenhav A, Musslick S, Griffiths TL. Rational metareasoning and the plasticity of cognitive control. PLOS Comput Biol. 2018;14(4):e1006043. doi:.https://doi.org/10.1371/journal.pcbi.1006043
  42. Shenhav A, Botvinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013;79(2):217–40. doi:.https://doi.org/10.1016/j.neuron.2013.07.007
  43. Westbrook A, Braver TS. Dopamine does double duty in motivating cognitive effort. Neuron. 2016;89(4):695–710. doi:.https://doi.org/10.1016/j.neuron.2015.12.029
  44. Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2015;20(3):345–52. doi:.https://doi.org/10.1038/mp.2014.44
  45. Billieux J, Flayelle M, Rumpf HJ, Stein DJ. High involvement versus pathological involvement in video games: a crucial distinction for ensuring the validity and utility of gaming disorder. Curr Addict Rep. 2019;6(3):323–30. doi:.https://doi.org/10.1007/s40429-019-00259-x
  46. Gillan CM, Fineberg NA, Robbins TW. A trans-diagnostic perspective on obsessive-compulsive disorder. Psychol Med. 2017;47(9):1528–48. doi:.https://doi.org/10.1017/S0033291716002786
  47. Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife. 2016;5:e11305. doi:.https://doi.org/10.7554/eLife.11305
  48. Lucantonio F, Caprioli D, Schoenbaum G. Transition from ‘model-based’ to ‘model-free’ behavioral control in addiction: Involvement of the orbitofrontal cortex and dorsolateral striatum. Neuropharmacology. 2014;76(Pt B):407–15. doi:.https://doi.org/10.1016/j.neuropharm.2013.05.033
  49. Redish AD, Jensen S, Johnson A. A unified framework for addiction: vulnerabilities in the decision process. Behav Brain Sci. 2008;31(4):415–37, discussion 437–87. doi:.https://doi.org/10.1017/S0140525X0800472X
  50. Byrne KA, Otto AR, Pang B, Patrick CJ, Worthy DA. Substance use is associated with reduced devaluation sensitivity. Cogn Affect Behav Neurosci. 2019;19(1):40–55. doi:.https://doi.org/10.3758/s13415-018-0638-9
  51. Robbins TW, Vaghi MM, Banca P. Obsessive-Compulsive Disorder: puzzles and prospects. Neuron. 2019;102(1):27–47. doi:.https://doi.org/10.1016/j.neuron.2019.01.046
  52. Robinson TE, Berridge KC. Incentive-sensitization and addiction. Addiction. 2001;96(1):103–14. doi:.https://doi.org/10.1046/j.1360-0443.2001.9611038.x
  53. Miles FJ, Everitt BJ, Dickinson A. Oral cocaine seeking by rats: action or habit? Behav Neurosci. 2003;117(5):927–38. doi:.https://doi.org/10.1037/0735-7044.117.5.927
  54. Corbit LH, Nie H, Janak PH. Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry. 2012;72(5):389–95. doi:.https://doi.org/10.1016/j.biopsych.2012.02.024
  55. Clemens KJ, Castino MR, Cornish JL, Goodchild AK, Holmes NM. Behavioral and neural substrates of habit formation in rats intravenously self-administering nicotine. Neuropsychopharmacology. 2014;39(11):2584–93. doi:.https://doi.org/10.1038/npp.2014.111
  56. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760–73. doi:.https://doi.org/10.1016/S2215-0366(16)00104-8
  57. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP. Limbic activation during cue-induced cocaine craving. Am J Psychiatry. 1999;156(1):11–8. doi:.https://doi.org/10.1176/ajp.156.1.11
  58. Everitt BJ, Dickinson A, Robbins TW. The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev. 2001;36(2-3):129–38. doi:.https://doi.org/10.1016/S0165-0173(01)00088-1
  59. O’Brien CP, Childress AR, Ehrman R, Robbins SJ. Conditioning factors in drug abuse: can they explain compulsion? J Psychopharmacol. 1998;12(1):15–22. doi:.https://doi.org/10.1177/026988119801200103
  60. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91. doi:.https://doi.org/10.1016/0165-0173(93)90013-P
  61. Lovibond PF. Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. J Exp Psychol Anim Behav Process. 1983;9(3):225–47. doi:.https://doi.org/10.1037/0097-7403.9.3.225
  62. Berridge KC, O’Doherty JP. Chapter 18 - From experienced utility to decision utility. In: Glimcher PW and Fehr E, editors. Neuroeconomics (Second Edition). San Diego: Academic Press; 2014. p. 335-51.
  63. Berridge KC. Wanting and liking: observations from the neuroscience and psychology laboratory. Inquiry (Oslo). 2009;52(4):378–98. doi:.https://doi.org/10.1080/00201740903087359
  64. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68(8):808–16. doi:.https://doi.org/10.1001/archgenpsychiatry.2011.32
  65. O’Sullivan SS, Wu K, Politis M, Lawrence AD, Evans AH, Bose SK, et al. Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain. 2011;134(Pt 4):969–78. doi:.https://doi.org/10.1093/brain/awr003
  66. Robinson MJF, Fischer AM, Ahuja A, Lesser EN, Maniates H. Roles of “Wanting” and “Liking” in motivating behavior: gambling, food, and drug addictions. In: Simpson EH, Balsam PD, editors. Behavioral Neuroscience of Motivation. Cham. New York: Springer International Publishing; 2016. p. 105–36.
  67. Voon V, Mole TB, Banca P, Porter L, Morris L, Mitchell S, et al. Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours. PLoS One. 2014;9(7):e102419. doi:.https://doi.org/10.1371/journal.pone.0102419
  68. Schulte EM, Potenza MN, Gearhardt AN. How much does the Addiction-Like Eating Behavior Scale add to the debate regarding food versus eating addictions? Int J Obes. 2018;42(4):946. doi:.https://doi.org/10.1038/ijo.2017.265
  69. Watson P, de Wit S. Current limits of experimental research into habits and future directions. Curr Opin Behav Sci. 2018;20:33–9. doi:.https://doi.org/10.1016/j.cobeha.2017.09.012
  70. Watson P, Wiers RW, Hommel B, de Wit S. Working for food you don’t desire. Cues interfere with goal-directed food-seeking. Appetite. 2014;79:139–48. doi:.https://doi.org/10.1016/j.appet.2014.04.005
  71. Tiffany ST. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol Rev. 1990;97(2):147–68. doi:.https://doi.org/10.1037/0033-295X.97.2.147
  72. Kurth-Nelson Z, Redish AD. Modeling decision-making systems in addiction.In: Gutkin B, Ahmed SH, editors. Computational neuroscience of drug addiction. New York: Springer; 2012, p. 163–87.
  73. Milivojevic V, Sinha R. Central and peripheral biomarkers of stress response for addiction risk and relapse vulnerability. Trends Mol Med. 2018;24(2):173–86. doi:.https://doi.org/10.1016/j.molmed.2017.12.010
  74. Sinha R. How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl). 2001;158(4):343–59. doi:.https://doi.org/10.1007/s002130100917
  75. Sinha R. How does stress lead to risk of alcohol relapse? Alcohol Res. 2012;34(4):432–40.
  76. Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch Gen Psychiatry. 2006;63(3):324–31. doi:.https://doi.org/10.1001/archpsyc.63.3.324
  77. Adinoff B, Junghanns K, Kiefer F, Krishnan-Sarin S. Suppression of the HPA axis stress-response: implications for relapse. Alcohol Clin Exp Res. 2005;29(7):1351–5. doi:.https://doi.org/10.1097/01.ALC.0000176356.97620.84
  78. al’Absi M. Hypothalamic-pituitary-adrenocortical responses to psychological stress and risk for smoking relapse. Int J Psychophysiol. 2006;59(3):218–27. doi:.https://doi.org/10.1016/j.ijpsycho.2005.10.010
  79. Lazarus RS, Folkman S. Stress, appraisal, and coping. New York: Springer publishing company; 1984.
  80. Sander D, Grandjean D, Scherer KR. An appraisal-driven componential approach to the emotional brain. Emot Rev. 2018;10(3):219–31. doi:.https://doi.org/10.1177/1754073918765653
  81. Sander D. Models of emotion: the affective neuroscience approach. In: Armony J, Vuilleumier P, editors. The Cambridge handbook of human affective neuroscience. New York: Cambridge University Press; 2013. p. 5–53.
  82. Lazarus RS, Folkman S. Stress, Appraisal, and Coping. New York: Springer; 1984. 1.
  83. Dickerson SS, Kemeny ME. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull. 2004;130(3):355–91. doi:.https://doi.org/10.1037/0033-2909.130.3.355
  84. Cabib S, Puglisi-Allegra S. The mesoaccumbens dopamine in coping with stress. Neurosci Biobehav Rev. 2012;36(1):79–89. doi:.https://doi.org/10.1016/j.neubiorev.2011.04.012
  85. Schwabe L, Dickinson A, Wolf OT. Stress, habits, and drug addiction: a psychoneuroendocrinological perspective. Exp Clin Psychopharmacol. 2011;19(1):53–63. doi:.https://doi.org/10.1037/a0022212
  86. Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flügge G, Korte SM, et al. Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35(5):1291–301. doi:.https://doi.org/10.1016/j.neubiorev.2011.02.003
  87. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24(3):151–80. doi:.https://doi.org/10.1016/j.yfrne.2003.07.001
  88. Kalisch R, Baker DG, Basten U, Boks MP, Bonanno GA, Brummelman E, et al. The resilience framework as a strategy to combat stress-related disorders. Nat Hum Behav. 2017;1(11):784–90. doi:.https://doi.org/10.1038/s41562-017-0200-8
  89. Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science. 2009;325(5940):621–5. doi:.https://doi.org/10.1126/science.1171203
  90. Schwabe L, Wolf OT. Stress prompts habit behavior in humans. J Neurosci. 2009;29(22):7191–8. doi:.https://doi.org/10.1523/JNEUROSCI.0979-09.2009
  91. Schwabe L, Höffken O, Tegenthoff M, Wolf OT. Preventing the stress-induced shift from goal-directed to habit action with a β-adrenergic antagonist. J Neurosci. 2011;31(47):17317–25. doi:.https://doi.org/10.1523/JNEUROSCI.3304-11.2011
  92. Schwabe L, Tegenthoff M, Höffken O, Wolf OT. Concurrent glucocorticoid and noradrenergic activity shifts instrumental behavior from goal-directed to habitual control. J Neurosci. 2010;30(24):8190–6. doi:.https://doi.org/10.1523/JNEUROSCI.0734-10.2010
  93. Schwabe L, Tegenthoff M, Höffken O, Wolf OT. Simultaneous glucocorticoid and noradrenergic activity disrupts the neural basis of goal-directed action in the human brain. J Neurosci. 2012;32(30):10146–55. doi:.https://doi.org/10.1523/JNEUROSCI.1304-12.2012
  94. Vogel S, Klumpers F, Schröder TN, Oplaat KT, Krugers HJ, Oitzl MS, et al. Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor. Neuropsychopharmacology. 2017;42(6):1262–71. doi:.https://doi.org/10.1038/npp.2016.262
  95. Maier SU, Makwana AB, Hare TA. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron. 2015;87(3):621–31. doi:.https://doi.org/10.1016/j.neuron.2015.07.005
  96. Otto AR, Raio CM, Chiang A, Phelps EA, Daw ND. Working-memory capacity protects model-based learning from stress. Proc Natl Acad Sci USA. 2013;110(52):20941–6. doi:.https://doi.org/10.1073/pnas.1312011110
  97. Radenbach C, Reiter AMF, Engert V, Sjoerds Z, Villringer A, Heinze HJ, et al. The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology. 2015;53:268–80. doi:.https://doi.org/10.1016/j.psyneuen.2014.12.017
  98. Pool ER, Delplanque S, Coppin G, Sander D. Is comfort food really comforting? Mechanisms underlying stress-induced eating. Food Res Int. 2015;76:207–15. doi:.https://doi.org/10.1016/j.foodres.2014.12.034
  99. Pool E, Sennwald V, Delplanque S, Brosch T, Sander D. Measuring wanting and liking from animals to humans: A systematic review. Neurosci Biobehav Rev. 2016;63:124–42. doi:.https://doi.org/10.1016/j.neubiorev.2016.01.006
  100. Allman MJ, DeLeon IG, Cataldo MF, Holland PC, Johnson AW. Learning processes affecting human decision making: An assessment of reinforcer-selective Pavlovian-to-instrumental transfer following reinforcer devaluation. J Exp Psychol Anim Behav Process. 2010;36(3):402–8. doi:.https://doi.org/10.1037/a0017876
  101. Corbit LH, Balleine BW. The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J Neurosci. 2011;31(33):11786–94. doi:.https://doi.org/10.1523/JNEUROSCI.2711-11.2011
  102. Pool E, Brosch T, Delplanque S, Sander D. Stress increases cue-triggered “wanting” for sweet reward in humans. J Exp Psychol Anim Learn Cogn. 2015;41(2):128–36. doi:.https://doi.org/10.1037/xan0000052
  103. Wassum KM, Ostlund SB, Balleine BW, Maidment NT. Differential dependence of Pavlovian incentive motivation and instrumental incentive learning processes on dopamine signaling. Learn Mem. 2011;18(7):475–83. doi:.https://doi.org/10.1101/lm.2229311
  104. Dickinson A, Balleine B. Motivational control of instrumental performance following a shift from thirst to hunger. Q J Exp Psychol B. 1990;42(4):413–31.
  105. Dickinson A, Dawson GR. Pavlovian processes in the motivational control of instrumental performance. Q J Exp Psychol. 1987;39:201–13.
  106. Peciña S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci. 2003;23(28):9395–402. doi:.https://doi.org/10.1523/JNEUROSCI.23-28-09395.2003
  107. Wyvell CL, Berridge KC. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci. 2000;20(21):8122–30. doi:.https://doi.org/10.1523/JNEUROSCI.20-21-08122.2000
  108. Wyvell CL, Berridge KC. Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci. 2001;21(19):7831–40. doi:.https://doi.org/10.1523/JNEUROSCI.21-19-07831.2001
  109. Dayan P, Berridge KC. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation. Cogn Affect Behav Neurosci. 2014;14(2):473–92. doi:.https://doi.org/10.3758/s13415-014-0277-8
  110. Robinson MJF, Berridge KC. Instant transformation of learned repulsion into motivational “wanting”. Curr Biol. 2013;23(4):282–9. doi:.https://doi.org/10.1016/j.cub.2013.01.016
  111. Peciña S, Schulkin J, Berridge KC. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol. 2006;4(1):8. doi:.https://doi.org/10.1186/1741-7007-4-8
  112. Berridge KC. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl). 2007;191(3):391–431. doi:.https://doi.org/10.1007/s00213-006-0578-x
  113. Anderson BA, Kim H. Mechanisms of value-learning in the guidance of spatial attention. Cognition. 2018;178:26–36. doi:.https://doi.org/10.1016/j.cognition.2018.05.005
  114. Hickey C, Peelen MV. Neural mechanisms of incentive salience in naturalistic human vision. Neuron. 2015;85(3):512–8. doi:.https://doi.org/10.1016/j.neuron.2014.12.049
  115. Pool E, Brosch T, Delplanque S, Sander D. Attentional bias for positive emotional stimuli: A meta-analytic investigation. Psychol Bull. 2016;142(1):79–106. doi:.https://doi.org/10.1037/bul0000026
  116. Sennwald V, Pool E, Brosch T, Delplanque S, Bianchi-Demicheli F, Sander D. Emotional attention for erotic stimuli: Cognitive and brain mechanisms. J Comp Neurol. 2016;524(8):1668–75. doi:.https://doi.org/10.1002/cne.23859
  117. Field M, Powell H. Stress increases attentional bias for alcohol cues in social drinkers who drink to cope. Alcohol Alcohol. 2007;42(6):560–6. doi:.https://doi.org/10.1093/alcalc/agm064
  118. Field M, Quigley M. Mild stress increases attentional bias in social drinkers who drink to cope: a replication and extension. Exp Clin Psychopharmacol. 2009;17(5):312–9. doi:.https://doi.org/10.1037/a0017090
  119. Goldfarb EV, Sinha R. Drug-induced glucocorticoids and memory for substance use. Trends Neurosci. 2018;41(11):853–68. doi:.https://doi.org/10.1016/j.tins.2018.08.005
  120. Milivojevic V, Sinha R. Central and peripheral biomarkers of stress response for addiction risk and relapse vulnerability. Trends Mol Med. 2018;24(2):173–86. doi:.https://doi.org/10.1016/j.molmed.2017.12.010
  121. de Quervain D, Schwabe L, Roozendaal B. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat Rev Neurosci. 2017;18(1):7–19. doi:.https://doi.org/10.1038/nrn.2016.155
  122. Wirz L, Bogdanov M, Schwabe L. Habits under stress: mechanistic insights across different types of learning. Curr Opin Behav Sci. 2018;20:9–16. doi:.https://doi.org/10.1016/j.cobeha.2017.08.009
  123. Quaedflieg CWEM, Stoffregen H, Sebalo I, Smeets T. Stress-induced impairment in goal-directed instrumental behaviour is moderated by baseline working memory. Neurobiol Learn Mem. 2019;158:42–9. doi:.https://doi.org/10.1016/j.nlm.2019.01.010
  124. Volkow ND, Fowler JS, Wang G-J, Swanson JM, Telang F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol. 2007;64(11):1575–9. doi:.https://doi.org/10.1001/archneur.64.11.1575
  125. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315(5816):1267–70. doi:.https://doi.org/10.1126/science.1137073
  126. Patzelt EH, Hartley CA, Gershman SJ. Computational phenotyping: using models to understand individual differences in personality, development, and mental illness. Personal Neurosci. 2018;1:e18. doi:.https://doi.org/10.1017/pen.2018.14
  127. Flagel SB, Robinson TE. Neurobiological basis of individual variation in stimulus-reward learning. Curr Opin Behav Sci. 2017;13:178–85. doi:.https://doi.org/10.1016/j.cobeha.2016.12.004
  128. Flagel SB, Watson SJ, Robinson TE, Akil H. Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology (Berl). 2007;191(3):599–607. doi:.https://doi.org/10.1007/s00213-006-0535-8
  129. Pearce JM, Hall G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev. 1980;87(6):532–52. doi:.https://doi.org/10.1037/0033-295X.87.6.532
  130. Rescorla RA, Wagner AR. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF, editors. Classical conditioning II: Current research and theory. New York: Appleton-Century-Crofts; 1972. p. 64–99.
  131. Pool ER, Pauli WM, Kress CS, O’Doherty JP. Behavioural evidence for parallel outcome-sensitive and outcome-insensitive Pavlovian learning systems in humans. Nat Hum Behav. 2019;3(3):284–96. doi:.https://doi.org/10.1038/s41562-018-0527-9
  132. Prévost C, McNamee D, Jessup RK, Bossaerts P, O’Doherty JP. Evidence for model-based computations in the human amygdala during Pavlovian conditioning. PLOS Comput Biol. 2013;9(2):e1002918. doi:.https://doi.org/10.1371/journal.pcbi.1002918
  133. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, et al. A selective role for dopamine in stimulus-reward learning. Nature. 2011;469(7328):53–7. doi:.https://doi.org/10.1038/nature09588
  134. Huys QJM, Tobler PN, Hasler G, Flagel SB. Chapter 3 - The role of learning-related dopamine signals in addiction vulnerability. In: Diana M, Di Chiara G, Spano P, editors. Dopamine Progress in Brain Research. Elsevier; 2014. p. 31-–7.
  135. Saunders BT, Robinson TE. A cocaine cue acts as an incentive stimulus in some but not others: implications for addiction. Biol Psychiatry. 2010;67(8):730–6. doi:.https://doi.org/10.1016/j.biopsych.2009.11.015
  136. Saunders BT, Robinson TE. Individual variation in the motivational properties of cocaine. Neuropsychopharmacology. 2011;36(8):1668–76. doi:.https://doi.org/10.1038/npp.2011.48
  137. Saunders BT, Robinson TE. Individual variation in resisting temptation: implications for addiction. Neurosci Biobehav Rev. 2013;37(9 Pt A):1955–75. doi:.https://doi.org/10.1016/j.neubiorev.2013.02.008
  138. Saunders BT, Yager LM, Robinson TE. Preclinical studies shed light on individual variation in addiction vulnerability. Neuropsychopharmacology. 2013;38(1):249–50. doi:.https://doi.org/10.1038/npp.2012.161
  139. Saunders BT, Yager LM, Robinson TE. Cue-evoked cocaine “craving”: role of dopamine in the accumbens core. J Neurosci. 2013;33(35):13989–4000. doi:.https://doi.org/10.1523/JNEUROSCI.0450-13.2013
  140. Tunstall BJ, Kearns DN. Sign-tracking predicts increased choice of cocaine over food in rats. Behav Brain Res. 2015;281:222–8. doi:.https://doi.org/10.1016/j.bbr.2014.12.034
  141. Joyner MA, Gearhardt AN, Flagel SB. A translational model to assess sign-tracking and goal-tracking behavior in children. Neuropsychopharmacology. 2018;43(1):228–9. doi:.https://doi.org/10.1038/npp.2017.196
  142. Garofalo S, di Pellegrino G. Individual differences in the influence of task-irrelevant Pavlovian cues on human behavior. Front Behav Neurosci. 2015;9:163. doi:.https://doi.org/10.3389/fnbeh.2015.00163
  143. Schad DJ, Rapp MA, Garbusow M, Nebe S, Sebold M, Obst E, et al. Dissociating neural learning signals in human sign- and goal-trackers. Nat Hum Behav. 2019. Epub ahead of print. doi:.https://doi.org/10.1038/s41562-019-0765-5
  144. Koob GF. Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory. Pharmacopsychiatry. 2009;42(S 01, Suppl 1):S32–41. doi:.https://doi.org/10.1055/s-0029-1216356

Most read articles by the same author(s)