Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 3940 (2019)

Targeting the Wnt signalling pathway in cancer: prospects and perils

  • Holly V. Shaw
  • Alexey Koval
  • Vladimir L. Katanaev
DOI
https://doi.org/10.4414/smw.2019.20129
Cite this as:
Swiss Med Wkly. 2019;149:w20129
Published
03.10.2019

Summary

The Wnt pathway, involved in cancer development and progression, has for a long time been said to be undruggable, owing to its complexity and involvement in stem cell biology. This mindset has shifted in the last few years as new research and insights into the pathway mechanisms specific to tumour cells become apparent, leading to the development of multiple compounds targeting the pathway. In this review, we introduce the Wnt pathway and its connections to cancer biology and therapy resistance. We further dive into the details of drugs that have entered clinical trials, examining their successes and side effects. We show that these drugs all have one thing in common: in order to be successful, the drugs must target tumour specific activated sub-branches of the pathway, either at the receptor level or at the nuclear transcription level.

References

  1. Uings IJ, Farrow SN. Cell receptors and cell signalling. Mol Pathol. 2000;53(6):295–9. doi:.https://doi.org/10.1136/mp.53.6.295
  2. Nusse R. Wnt signaling in disease and in development. Cell Res. 2005;15(1):28–32. doi:.https://doi.org/10.1038/sj.cr.7290260
  3. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. doi:.https://doi.org/10.4161/org.4.2.5851
  4. Schulte G. Frizzleds and WNT/β-catenin signaling--The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. Eur J Pharmacol. 2015;763(Pt B):191–5. doi:.https://doi.org/10.1016/j.ejphar.2015.05.031
  5. Roy L, Cowden Dahl KD. Can Stemness and Chemoresistance Be Therapeutically Targeted via Signaling Pathways in Ovarian Cancer? Cancers (Basel). 2018;10(8):241. doi:.https://doi.org/10.3390/cancers10080241
  6. MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol. 2012;4(12):a007880. doi:.https://doi.org/10.1101/cshperspect.a007880
  7. Miller JR. The Wnts. Genome Biol. 2002;3(1):S3001.
  8. Dijksterhuis JP, Baljinnyam B, Stanger K, Sercan HO, Ji Y, Andres O, et al. Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J Biol Chem. 2015;290(11):6789–98. doi:.https://doi.org/10.1074/jbc.M114.612648
  9. Cruciat C-M, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 2013;5(3):a015081. doi:.https://doi.org/10.1101/cshperspect.a015081
  10. de Lau WB, Snel B, Clevers HC. The R-spondin protein family. Genome Biol. 2012;13(3):242. doi:.https://doi.org/10.1186/gb-2012-13-3-242
  11. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J Cell Biol. 2003;162(5):899–908. doi:.https://doi.org/10.1083/jcb.200303158
  12. Kahn M. Wnt Signaling in Stem Cells and Cancer Stem Cells: A Tale of Two Coactivators. Prog Mol Biol Transl Sci. 2018;153:209–44. doi:.https://doi.org/10.1016/bs.pmbts.2017.11.007
  13. Krausova M, Korinek V. Wnt signaling in adult intestinal stem cells and cancer. Cell Signal. 2014;26(3):570–9. doi:.https://doi.org/10.1016/j.cellsig.2013.11.032
  14. Malhotra S, Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell. 2009;4(1):27–36. doi:.https://doi.org/10.1016/j.stem.2008.12.004
  15. Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, et al. Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far. Front Cell Dev Biol. 2019;6:170. doi:.https://doi.org/10.3389/fcell.2018.00170
  16. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50. doi:.https://doi.org/10.1038/nature03319
  17. De A. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2011;43(10):745–56. doi:.https://doi.org/10.1093/abbs/gmr079
  18. Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, et al. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 2006;66(21):10439–48. doi:.https://doi.org/10.1158/0008-5472.CAN-06-2359
  19. Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241(3):350–61. doi:.https://doi.org/10.1002/path.4841
  20. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002;1(3):279–88. doi:.https://doi.org/10.1016/S1535-6108(02)00045-4
  21. Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A, et al. APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc Natl Acad Sci USA. 2000;97(7):3352–7. doi:.https://doi.org/10.1073/pnas.97.7.3352
  22. Schneikert J, Behrens J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut. 2007;56(3):417–25. doi:.https://doi.org/10.1136/gut.2006.093310
  23. Bruun J, Kolberg M, Nesland JM, Svindland A, Nesbakken A, Lothe RA. Prognostic Significance of β-Catenin, E-Cadherin, and SOX9 in Colorectal Cancer: Results from a Large Population-Representative Series. Front Oncol. 2014;4:118. doi:.https://doi.org/10.3389/fonc.2014.00118
  24. Kamposioras K, Konstantara A, Kotoula V, Lakis S, Kouvatseas G, Akriviadis E, et al. The prognostic significance of WNT pathway in surgically-treated colorectal cancer: β-catenin expression predicts for disease-free survival. Anticancer Res. 2013;33(10):4573–84.
  25. Yoshida N, Kinugasa T, Ohshima K, Yuge K, Ohchi T, Fujino S, et al. Analysis of Wnt and β-catenin Expression in Advanced Colorectal Cancer. Anticancer Res. 2015;35(8):4403–10.
  26. Veloudis G, Pappas A, Gourgiotis S, Falidas E, Dimitriou N, Karavokiros I, et al. Assessing the clinical utility of Wnt pathway markers in colorectal cancer. J BUON. 2017;22(2):431–6.
  27. Koval A, Katanaev VL. Dramatic dysbalancing of the Wnt pathway in breast cancers. Sci Rep. 2018;8(1):7329. doi:.https://doi.org/10.1038/s41598-018-25672-6
  28. Xu X, Sun P-L, Li J-Z, Jheon S, Lee C-T, Chung J-H. Aberrant Wnt1/β-catenin expression is an independent poor prognostic marker of non-small cell lung cancer after surgery. J Thorac Oncol. 2011;6(4):716–24. doi:.https://doi.org/10.1097/JTO.0b013e31820c5189
  29. Zeng C-M, Chen Z, Fu L. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers. Int J Mol Sci. 2018;19(5):1543. doi:.https://doi.org/10.3390/ijms19051543
  30. Li G, Su Q, Liu H, Wang D, Zhang W, Lu Z, et al. Frizzled7 Promotes Epithelial-to-mesenchymal Transition and Stemness Via Activating Canonical Wnt/β-catenin Pathway in Gastric Cancer. Int J Biol Sci. 2018;14(3):280–93. doi:.https://doi.org/10.7150/ijbs.23756
  31. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. doi:.https://doi.org/10.1038/35102167
  32. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. doi:.https://doi.org/10.1038/nm.4409
  33. Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV, et al. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene. 2008;27(13):1905–15. doi:.https://doi.org/10.1038/sj.onc.1210823
  34. Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci. 2008;121(23):3853–7. doi:.https://doi.org/10.1242/jcs.039131
  35. Jaiswal PK, Goel A, Mittal RD. Survivin: A molecular biomarker in cancer. Indian J Med Res. 2015;141(4):389–97. doi:.https://doi.org/10.4103/0971-5916.159250
  36. Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 2014;33(13):1454–73. doi:.https://doi.org/10.15252/embj.201488598
  37. Sprowl-Tanio S, Habowski AN, Pate KT, McQuade MM, Wang K, Edwards RA, et al. Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer Metab. 2016;4(1):20. doi:.https://doi.org/10.1186/s40170-016-0159-3
  38. Lowy AM, Clements WM, Bishop J, Kong L, Bonney T, Sisco K, et al. β-Catenin/Wnt signaling regulates expression of the membrane type 3 matrix metalloproteinase in gastric cancer. Cancer Res. 2006;66(9):4734–41. doi:.https://doi.org/10.1158/0008-5472.CAN-05-4268
  39. Wu Z-Q, Li X-Y, Hu CY, Ford M, Kleer CG, Weiss SJ. Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA. 2012;109(41):16654–9. doi:.https://doi.org/10.1073/pnas.1205822109
  40. Lage H. Gene Therapeutic Approaches to Overcome ABCB1-Mediated Drug Resistance. Recent Results Cancer Res. 2016;209:87–94. doi:.https://doi.org/10.1007/978-3-319-42934-2_6
  41. Yamada T, Takaoka AS, Naishiro Y, Hayashi R, Maruyama K, Maesawa C, et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/β-catenin complex in early colorectal carcinogenesis. Cancer Res. 2000;60(17):4761–6.
  42. Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, et al. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/β-catenin pathway. Oncogene. 2009;28(23):2245–56. doi:.https://doi.org/10.1038/onc.2009.80
  43. Zhang Z-M, Wu J-F, Luo Q-C, Liu Q-F, Wu Q-W, Ye G-D, et al. Pygo2 activates MDR1 expression and mediates chemoresistance in breast cancer via the Wnt/β-catenin pathway. Oncogene. 2016;35(36):4787–97. doi:.https://doi.org/10.1038/onc.2016.10
  44. Chikazawa N, Tanaka H, Tasaka T, Nakamura M, Tanaka M, Onishi H, et al. Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Res. 2010;30(6):2041–8.
  45. Chau WK, Ip CK, Mak ASC, Lai H-C, Wong AST. c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene. 2013;32(22):2767–81. doi:.https://doi.org/10.1038/onc.2012.290
  46. Wickström M, Dyberg C, Milosevic J, Einvik C, Calero R, Sveinbjörnsson B, et al. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat Commun. 2015;6(1):8904. doi:.https://doi.org/10.1038/ncomms9904
  47. Johnsen JI, Wickström M, Baryawno N. Wingless/β-catenin signaling as a modulator of chemoresistance in cancer. Mol Cell Oncol. 2016;3(2):e1131356. doi:.https://doi.org/10.1080/23723556.2015.1131356
  48. Li Z-Y, Huang G-D, Chen L, Zhang C, Chen B-D, Li Q-Z, et al. Tanshinone IIA induces apoptosis via inhibition of Wnt/β‑catenin/MGMT signaling in AtT‑20 cells. Mol Med Rep. 2017;16(5):5908–14. doi:.https://doi.org/10.3892/mmr.2017.7325
  49. Yamamoto TM, McMellen A, Watson ZL, Aguilera J, Sikora MJ, Ferguson R, et al. Targeting Wnt Signaling To Overcome PARP Inhibitor Resistance. bioRxiv. 2018;378463. Preprint. doi:
  50. Zhao Y, Tao L, Yi J, Song H, Chen L. The Role of Canonical Wnt Signaling in Regulating Radioresistance. Cell Physiol Biochem. 2018;48(2):419–32. doi:.https://doi.org/10.1159/000491774
  51. Jun S, Jung Y-S, Suh HN, Wang W, Kim MJ, Oh YS, et al. LIG4 mediates Wnt signalling-induced radioresistance. Nat Commun. 2016;7(1):10994. doi:.https://doi.org/10.1038/ncomms10994
  52. Shaw HV, Koval A, Katanaev VL. A high-throughput assay pipeline for specific targeting of frizzled GPCRs in cancer. Methods Cell Biol. 2019;149:57–75. doi:.https://doi.org/10.1016/bs.mcb.2018.08.006
  53. Lee HJ, Zhang X, Zheng JJ. Inhibiting the Wnt Signaling Pathway with Small Molecules. In Goss KH, Kahn, M (eds): Targeting the Wnt Pathway in Cancer. Berlin: springer; 2011. pp 183–209.
  54. Wnt Homepage. Small molecules in Wnt signaling | The Wnt Homepage [Internet]. 2019 [cited 2019 May 16]. Available from: https://web.stanford.edu/group/nusselab/cgi-bin/wnt/smallmolecules
  55. Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. Mol Cell Ther. 2014;2(1):28. doi:.https://doi.org/10.1186/2052-8426-2-28
  56. Koval A, Katanaev VL. Platforms for high-throughput screening of Wnt/Frizzled antagonists. Drug Discov Today. 2012;17(23-24):1316–22. doi:.https://doi.org/10.1016/j.drudis.2012.07.007
  57. Zhong Y, Katavolos P, Nguyen T, Lau T, Boggs J, Sambrone A, et al. Tankyrase Inhibition Causes Reversible Intestinal Toxicity in Mice with a Therapeutic Index < 1. Toxicol Pathol. 2016;44(2):267–78. doi:.https://doi.org/10.1177/0192623315621192
  58. Mariotti L, Pollock K, Guettler S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Br J Pharmacol. 2017;174(24):4611–36. doi:.https://doi.org/10.1111/bph.14038
  59. Aguilera O, Peña C, García JM, Larriba MJ, Ordóñez-Morán P, Navarro D, et al. The Wnt antagonist DICKKOPF-1 gene is induced by 1α,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis. 2007;28(9):1877–84. doi:.https://doi.org/10.1093/carcin/bgm094
  60. Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 2012;109(29):11717–22. doi:.https://doi.org/10.1073/pnas.1120068109
  61. Smith DC, Rosen LS, Chugh R, Goldman JW, Xu L, Kapoun A, et al. First-in-human evaluation of the human monoclonal antibody vantictumab (OMP-18R5; anti-Frizzled) targeting the WNT pathway in a phase I study for patients with advanced solid tumors. J Clin Oncol. 2013;31(15_suppl):2540.
  62. Mita MM, Becerra C, Richards DA, Mita AC, Shagisultanova E, Osborne CRC, et al. Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with paclitaxel (P) in patients (pts) with 1st- to 3rd-line metastatic HER2-negative breast cancer (BC). J Clin Oncol. 2016;34(15_suppl):2516. doi:.https://doi.org/10.1200/JCO.2016.34.15_suppl.2516
  63. Messersmith W, Cohen S, Shahda S, Lenz H-J, Weekes C, Dotan E, et al. Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with nab-paclitaxel (Nab-P) and gemcitabine (G) in patients (pts) with previously untreated stage IV pancreatic cancer (PC). Ann Oncol. 2016;27(6_suppl, suppl_6). doi:.https://doi.org/10.1093/annonc/mdw371.69
  64. Davis SL, Cardin DB, Shahda S, Lenz H-J, Dotan E, O’Neil BH, et al. A phase 1b dose escalation study of Wnt pathway inhibitor vantictumab in combination with nab-paclitaxel and gemcitabine in patients with previously untreated metastatic pancreatic cancer. Invest New Drugs. 2019. doi:.https://doi.org/10.1007/s10637-019-00824-1
  65. Jimeno A, Gordon M, Chugh R, Messersmith W, Mendelson D, Dupont J, et al. A First-in-Human Phase I Study of the Anticancer Stem Cell Agent Ipafricept (OMP-54F28), a Decoy Receptor for Wnt Ligands, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017;23(24):7490–7. doi:.https://doi.org/10.1158/1078-0432.CCR-17-2157
  66. Tai D, Wells K, Arcaroli J, Vanderbilt C, Aisner DL, Messersmith WA, et al. Targeting the WNT Signaling Pathway in Cancer Therapeutics. Oncologist. 2015;20(10):1189–98. doi:.https://doi.org/10.1634/theoncologist.2015-0057
  67. Kim K-A, Zhao J, Andarmani S, Kakitani M, Oshima T, Binnerts ME, et al. R-Spondin proteins: a novel link to β-catenin activation. Cell Cycle. 2006;5(1):23–6. doi:.https://doi.org/10.4161/cc.5.1.2305
  68. Knight MN, Karuppaiah K, Lowe M, Mohanty S, Zondervan RL, Bell S, et al. R-spondin-2 is a Wnt agonist that regulates osteoblast activity and bone mass. Bone Res. 2018;6(1):24. doi:.https://doi.org/10.1038/s41413-018-0026-7
  69. Wang H, Brennan TA, Russell E, Kim J-H, Egan KP, Chen Q, et al. R-Spondin 1 promotes vibration-induced bone formation in mouse models of osteoporosis. J Mol Med (Berl). 2013;91(12):1421–9. doi:.https://doi.org/10.1007/s00109-013-1068-3
  70. Oncomed Annual Report [Internet]. 2017. Available from: http://www.oncomed.com/SEC-Documents/0001564590-18-005014.pdf
  71. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. Structural basis of Wnt recognition by Frizzled. Science. 2012;337(6090):59–64. doi:.https://doi.org/10.1126/science.1222879
  72. Speer KF, Sommer A, Tajer B, Mullins MC, Klein PS, Lemmon MA. Non-acylated Wnts can promote signaling. Cell Rep. 2019;26(4):875–883.e5. doi:.https://doi.org/10.1016/j.celrep.2018.12.104
  73. Janku F, Connolly R, LoRusso P, de Jonge M, Vaishampayan U, Rodon J, et al. Abstract C45: Phase I study of WNT974, a first-in-class Porcupine inhibitor, in advanced solid tumors. Mol Cancer Ther. 2015;14(12, Supplement 2):C45.
  74. Rodon J, Argilés G, Connolly RM, Vaishampayan U, de Jonge M, Garralda E, et al. Abstract CT175: Biomarker analyses from a phase I study of WNT974, a first-in-class Porcupine inhibitor, in patients (pts) with advanced solid tumors. Cancer Res. 2018;78(13, Supplement):CT175.
  75. Ng M, Tan DS, Subbiah V, Weekes CD, Teneggi V, Diermayr V, et al. First-in-human phase 1 study of ETC-159 an oral PORCN inhbitor in patients with advanced solid tumours. J Clin Oncol. 2017;35(15_suppl):2584. doi:.https://doi.org/10.1200/JCO.2017.35.15_suppl.2584
  76. Funck-Brentano T, Nilsson KH, Brommage R, Henning P, Lerner UH, Koskela A, et al. Porcupine inhibitors impair trabecular and cortical bone mass and strength in mice. J Endocrinol. 2018;238(1):13–23. doi:.https://doi.org/10.1530/JOE-18-0153
  77. Moon J, Zhou H, Zhang LS, Tan W, Liu Y, Zhang S, et al. Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist. Proc Natl Acad Sci USA. 2017;114(7):1649–54. doi:.https://doi.org/10.1073/pnas.1621346114
  78. Säfholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T. A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem. 2006;281(5):2740–9. doi:.https://doi.org/10.1074/jbc.M508386200
  79. Soerensen PG, Andersson T, Buhl U, Moelvadgaard T, Jensen PB, Brunner N, et al. Phase I dose-escalating study to evaluate the safety, tolerability, and pharmacokinetic and pharmacodynamic profiles of Foxy-5 in patients with metastatic breast, colorectal, or prostate cancer. J Clin Oncol. 2014;32(15_suppl):TPS1140. doi:.https://doi.org/10.1200/jco.2014.32.15_suppl.tps1140
  80. Andersson T, Axelsson L, Mohapatra P, Prasad C, Soerensen PG, Mau-Soerensen M, et al. Abstract A116: Targeting the Wnt-5a signaling pathway as a novel anti-metastatic therapy. Mol Cancer Ther. 2015;14(12, Supplement 2):A116.
  81. WntResearch. A commentary on the interim Foxy-5 phase 1 study report. 2015. Available at: https://www.wntresearch.com/wp-content/uploads/2019/03/a-commentary-on-the-interim-foxy-5-phase-1-study-report-final-101115.pdf
  82. Gang EJ, Hsieh Y-T, Pham J, Zhao Y, Nguyen C, Huantes S, et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene. 2014;33(17):2169–78. doi:.https://doi.org/10.1038/onc.2013.169
  83. He K, Xu T, Xu Y, Ring A, Kahn M, Goldkorn A. Cancer cells acquire a drug resistant, highly tumorigenic, cancer stem-like phenotype through modulation of the PI3K/Akt/β-catenin/CBP pathway. Int J Cancer. 2014;134(1):43–54. doi:.https://doi.org/10.1002/ijc.28341
  84. Wend P, Fang L, Zhu Q, Schipper JH, Loddenkemper C, Kosel F, et al. Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J. 2013;32(14):1977–89. doi:.https://doi.org/10.1038/emboj.2013.127
  85. Cha JY, Jung J-E, Lee K-H, Briaud I, Tenzin F, Jung HK, et al. Anti-Tumor Activity of Novel Small Molecule Wnt Signaling Inhibitor, CWP232291, In Multiple Myeloma. Blood. 2010;116(21):3038.
  86. El-Khoueiry AB, Ning Y, Yang D, Cole S, Kahn M, Zoghbi M, et al. A phase I first-in-human study of PRI-724 in patients (pts) with advanced solid tumors. J Clin Oncol. 2013;31(15_suppl):2501.
  87. Foundation FS. 19th Congress of the European Hematology Association, Milan, Italy, June 12–15, 2014. Haematologica. 2014;99(supplement 1):1–796.
  88. Ko AH, Chiorean EG, Kwak EL, Lenz H-J, Nadler PI, Wood DL, et al. Final results of a phase Ib dose-escalation study of PRI-724, a CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with advanced pancreatic adenocarcinoma (APC) as second-line therapy after FOLFIRINOX or FOLFOX. J Clin Oncol. 2016;34(15_suppl):e15721. doi:.https://doi.org/10.1200/JCO.2016.34.15_suppl.e15721
  89. Nishikawa K, Osawa Y, Kimura K. Wnt/β-Catenin Signaling as a Potential Target for the Treatment of Liver Cirrhosis Using Antifibrotic Drugs. Int J Mol Sci. 2018;19(10):3103. doi:.https://doi.org/10.3390/ijms19103103
  90. Ahmed K, Shaw HV, Koval A, Katanaev VL. A Second WNT for Old Drugs: Drug Repositioning against WNT-Dependent Cancers. Cancers (Basel). 2016;8(7):66. doi:.https://doi.org/10.3390/cancers8070066
  91. Harb J, Lin P-J, Hao J. Recent Development of Wnt Signaling Pathway Inhibitors for Cancer Therapeutics. Curr Oncol Rep. 2019;21(2):12. doi:.https://doi.org/10.1007/s11912-019-0763-9
  92. Ahmed K, Koval A, Xu J, Bodmer A, Katanaev VL. Towards the first targeted therapy for triple-negative breast cancer: Repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor. Cancer Lett. 2019;449:45–55. doi:.https://doi.org/10.1016/j.canlet.2019.02.018
  93. Koval AV, Vlasov P, Shichkova P, Khunderyakova S, Markov Y, Panchenko J, et al. Anti-leprosy drug clofazimine inhibits growth of triple-negative breast cancer cells via inhibition of canonical Wnt signaling. Biochem Pharmacol. 2014;87(4):571–8. doi:.https://doi.org/10.1016/j.bcp.2013.12.007
  94. Koval A, Pieme CA, Queiroz EF, Ragusa S, Ahmed K, Blagodatski A, et al. Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts. Cancer Lett. 2018;435:110–20. doi:.https://doi.org/10.1016/j.canlet.2018.08.003
  95. Blagodatski A, Cherepanov V, Koval A, Kharlamenko VI, Khotimchenko YS, Katanaev VL. High-throughput targeted screening in triple-negative breast cancer cells identifies Wnt-inhibiting activities in Pacific brittle stars. Sci Rep. 2017;7(1):11964. doi:.https://doi.org/10.1038/s41598-017-12232-7
  96. Sheridan C. Wnt is back in drugmakers’ sights, but is it druggable? Nat Biotechnol. 2018;36(11):1028–9. doi:.https://doi.org/10.1038/nbt1118-1028