Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 149 No. 3334 (2019)

Prevalence of genetic susceptibility for breast and ovarian cancer in a non-cancer related study population: secondary germline findings from a Swiss single centre cohort

DOI
https://doi.org/10.4414/smw.2019.20092
Cite this as:
Swiss Med Wkly. 2019;149:w20092
Published
18.08.2019

Abstract

BACKGROUND

Since the advent of high-throughput sequencing technologies, organised germline screening, independent of the personal and family cancer history, has been frequently proposed. Since ethnic and geographic populations significantly differ in their mutation spectra and prevalence, one critical prerequisite would be the knowledge of the expected carrier frequencies.

OBJECTIVE

For the first time, in a retrospective non-cancer related cohort from a single Swiss genetic centre, we systematically assessed the prevalence of secondary findings in 19 genes (BRCA1/2 plus 17 non-BRCA genes) previously designated by the US National Comprehensive Cancer Network (NCCN) for hereditary breast and ovarian cancer (HBOC) germline testing.

DESIGN

A total of 400 individuals without a cancer diagnosis undergoing whole-exome sequencing (WES) analysis for neurodevelopmental disorders (NDDs) from 2015 to 2017 at IMG Zurich were included after quality assessment. Among these, 180 were unaffected parental couples, 27 unaffected parental singles and 13 NDD index patients (mean age 43 years). The majority of the cohort was of Caucasian ethnicity (n = 336, 84.0%) and of Northwest European ancestry (n = 202, 50.5%), for 70 of whom (42.5%) an autochthonous Swiss descent was assumed. For WES filtering of rare, potentially actionable secondary variants in HBOC genes, an overall minor allele frequency (MAF) below 0.65% was used as cut-off. Each rare variant was manually evaluated according to the recommended ACGM-AMP standards, with some adaptations including “hypomorphic” as an additional distinct pathogenicity class.

RESULTS

Overall, 526 rare secondary variants (339 different variants) were encountered, with the BRCA1/2 genes accounting for 27.2% of the total variant yield. If stratified for variant pathogenicity, for BRCA1/2, three pathogenic variants were found in three females of Italian ancestry (carrier frequency of 0.8%). In the non-BRCA genes, five carriers of (likely) pathogenic variants (1.3%) were identified, with two Swiss individuals harbouring the same CHEK2 Arg160Gly variant known to be recurrent among Caucasians. Hence, the overall carrier rate added up to 2.0%. Additionally, seven various hypomorphic HBOC predisposing alleles were detected in 22 individuals (5.5%).

CONCLUSION

We provide the first evidence of a high prevalence of HBOC-related cancer susceptibility in the heterogeneous Swiss general population and relevant subpopulations, particularly in individuals of Italian descent. These pioneering data may substantiate population-based HBOC screening in Switzerland.

References

  1. Arndt V, Feller A, Hauri D, Heusser R, Junker C, Kuehni C, et al. Swiss Cancer Report 2015 - Current situation and developments. Neuchâtel: Federal Statistical Office (FSO); 2016
  2. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108(44):18032–7. doi:.https://doi.org/10.1073/pnas.1115052108
  3. Katapodi MC, Viassolo V, Caiata-Zufferey M, Nikolaidis C, Bührer-Landolt R, Buerki N, et al. Cancer Predisposition Cascade Screening for Hereditary Breast/Ovarian Cancer and Lynch Syndromes in Switzerland: Study Protocol. JMIR Res Protoc. 2017;6(9):e184. doi:.https://doi.org/10.2196/resprot.8138
  4. Bouchardy C, Lorez M, Arnst V, NICER Working group. Effects of age and stage on breast cancer survival in Switzerland. Swiss Cancer Bull. 2015;35(2):152–7.
  5. Schoumacher F, Glaus A, Mueller H, Eppenberger U, Bolliger B, Senn HJ. BRCA1/2 mutations in Swiss patients with familial or early-onset breast and ovarian cancer. Swiss Med Wkly. 2001;131(15-16):223–6.
  6. Schroeder C, Faust U, Sturm M, Hackmann K, Grundmann K, Harmuth F, et al. HBOC multi-gene panel testing: comparison of two sequencing centers. Breast Cancer Res Treat. 2015;152(1):129–36. doi:.https://doi.org/10.1007/s10549-015-3429-9
  7. Kast K, Rhiem K, Wappenschmidt B, Hahnen E, Hauke J, Bluemcke B, et al.; German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet. 2016;53(7):465–71. doi:.https://doi.org/10.1136/jmedgenet-2015-103672
  8. Daly MB, Pilarski R, Berry M, Buys SS, Farmer M, Friedman S, et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast and Ovarian, Version 2.2017. J Natl Compr Canc Netw. 2017;15(1):9–20. doi:.https://doi.org/10.6004/jnccn.2017.0003
  9. Chappuis POBB, Bürki N, Buser K, Heinimann K, Monnerat C, et al. Swiss guidelines for counselling and testing - Genetic predisposition to breast and ovarian cancer. Schweiz Arzteztg. 2017;98(2122):682–4. doi:.https://doi.org/10.4414/saez.2017.05502
  10. Paluch-Shimon S, Cardoso F, Sessa C, Balmana J, Cardoso MJ, Gilbert F, et al.; ESMO Guidelines Committee. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO Clinical Practice Guidelines for cancer prevention and screening. Ann Oncol. 2016;27(suppl 5):v103–10. doi:.https://doi.org/10.1093/annonc/mdw327
  11. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). Interdisziplinäre S3-Leitline für die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms, Version 4.1; 2018. AWMF-Registernummer 032-045OL.
  12. Rosenthal ET, Bernhisel R, Brown K, Kidd J, Manley S. Clinical testing with a panel of 25 genes associated with increased cancer risk results in a significant increase in clinically significant findings across a broad range of cancer histories. Cancer Genet. 2017;218-219:58–68. doi:.https://doi.org/10.1016/j.cancergen.2017.09.003
  13. Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121(1):25–33. doi:.https://doi.org/10.1002/cncr.29010
  14. Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304–11. doi:.https://doi.org/10.1200/JCO.2014.57.1414
  15. Kurian AW, Sigal BM, Plevritis SK. Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers. J Clin Oncol. 2010;28(2):222–31. doi:.https://doi.org/10.1200/JCO.2009.22.7991
  16. Le-Petross HT, Whitman GJ, Atchley DP, Yuan Y, Gutierrez-Barrera A, Hortobagyi GN, et al. Effectiveness of alternating mammography and magnetic resonance imaging for screening women with deleterious BRCA mutations at high risk of breast cancer. Cancer. 2011;117(17):3900–7. doi:.https://doi.org/10.1002/cncr.25971
  17. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50. doi:.https://doi.org/10.1200/JCO.2014.56.2728
  18. Gabai-Kapara E, Lahad A, Kaufman B, Friedman E, Segev S, Renbaum P, et al. Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc Natl Acad Sci USA. 2014;111(39):14205–10. doi:.https://doi.org/10.1073/pnas.1415979111
  19. Adams MC, Evans JP, Henderson GE, Berg JS. The promise and peril of genomic screening in the general population. Genet Med. 2016;18(6):593–9. doi:.https://doi.org/10.1038/gim.2015.136
  20. D’Andrea E, Marzuillo C, De Vito C, Di Marco M, Pitini E, Vacchio MR, et al. Which BRCA genetic testing programs are ready for implementation in health care? A systematic review of economic evaluations. Genet Med. 2016;18(12):1171–80. doi:.https://doi.org/10.1038/gim.2016.29
  21. Thompson ML, Finnila CR, Bowling KM, Brothers KB, Neu MB, Amaral MD, et al. Genomic sequencing identifies secondary findings in a cohort of parent study participants. Genet Med. 2018;20(12):1635–43. Published online April 12, 2018. doi:.https://doi.org/10.1038/gim.2018.53
  22. Weiner C. Anticipate and communicate: Ethical management of incidental and secondary findings in the clinical, research, and direct-to-consumer contexts (December 2013 report of the Presidential Commission for the Study of Bioethical Issues). Am J Epidemiol. 2014;180(6):562–4. doi:.https://doi.org/10.1093/aje/kwu217
  23. Boonsawat P, Joset P, Steindl K, Oneda B, Gogoll L, Azzarello-Burri S, et al.; Undiagnosed Diseases Network (UDN). Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet Med. 2019. Published online March 3, 2019 [Epub ahead of print]. doi:.https://doi.org/10.1038/s41436-019-0464-7
  24. Papuc SM, Abela L, Steindl K, Begemann A, Simmons TL, Schmitt B, et al. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet. 2019;27(3):408–21. Published online December 14, 2018. doi:.https://doi.org/10.1038/s41431-018-0299-8
  25. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23. doi:.https://doi.org/10.1038/gim.2015.30
  26. Kobayashi Y, Yang S, Nykamp K, Garcia J, Lincoln SE, Topper SE. Pathogenic variant burden in the ExAC database: an empirical approach to evaluating population data for clinical variant interpretation. Genome Med. 2017;9(1):13. doi:.https://doi.org/10.1186/s13073-017-0403-7
  27. Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, et al.; Invitae Clinical Genomics Group. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19(10):1105–17. doi:.https://doi.org/10.1038/gim.2017.37
  28. Spurdle AB, Healey S, Devereau A, Hogervorst FB, Monteiro AN, Nathanson KL, et al.; ENIGMA. ENIGMA--evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat. 2012;33(1):2–7. doi:.https://doi.org/10.1002/humu.21628
  29. Szabo C, Masiello A, Ryan JF, Brody LC. The breast cancer information core: database design, structure, and scope. Hum Mutat. 2000;16(2):123–31. doi:.https://doi.org/10.1002/1098-1004(200008)16:2<123::AID-HUMU4>3.0.CO;2-Y
  30. Plazzer JP, Sijmons RH, Woods MO, Peltomäki P, Thompson B, Den Dunnen JT, et al. The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam Cancer. 2013;12(2):175–80. doi:.https://doi.org/10.1007/s10689-013-9616-0
  31. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19(6):607–14. doi:.https://doi.org/10.1002/humu.10081
  32. Béroud C, Letovsky SI, Braastad CD, Caputo SM, Beaudoux O, Bignon YJ, et al.; Laboratory Corporation of America Variant Classification Group; Quest Diagnostics Variant Classification Group; UNICANCER Genetic Group BRCA Laboratory Network. BRCA Share: A Collection of Clinical BRCA Gene Variants. Hum Mutat. 2016;37(12):1318–28. doi:.https://doi.org/10.1002/humu.23113
  33. Chandrasekharappa SC, Chinn SB, Donovan FX, Chowdhury NI, Kamat A, Adeyemo AA, et al. Assessing the spectrum of germline variation in Fanconi anemia genes among patients with head and neck carcinoma before age 50. Cancer. 2017;123(20):3943–54. doi:.https://doi.org/10.1002/cncr.30802
  34. Tang R, Prosser DO, Love DR. Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinforma. 2016;2016:5614058. doi:.https://doi.org/10.1155/2016/5614058
  35. Baert A, Machackova E, Coene I, Cremin C, Turner K, Portigal-Todd C, et al. Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11. Hum Mutat. 2018;39(4):515–26. doi:.https://doi.org/10.1002/humu.23390
  36. Janavičius R. Founder BRCA1/2 mutations in the Europe: implications for hereditary breast-ovarian cancer prevention and control. EPMA J. 2010;1(3):397–412. doi:.https://doi.org/10.1007/s13167-010-0037-y
  37. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, et al.; EMBRACE; GEMO Study Collaborators; HEBON. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat. 2018;39(5):593–620. doi:.https://doi.org/10.1002/humu.23406
  38. Leedom TP, LaDuca H, McFarland R, Li S, Dolinsky JS, Chao EC. Breast cancer risk is similar for CHEK2 founder and non-founder mutation carriers. Cancer Genet. 2016;209(9):403–7. doi:.https://doi.org/10.1016/j.cancergen.2016.08.005
  39. Southey MC, Goldgar DE, Winqvist R, Pylkäs K, Couch F, Tischkowitz M, et al.; Australian Ovarian Cancer Study Group. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet. 2016;53(12):800–11. doi:.https://doi.org/10.1136/jmedgenet-2016-103839
  40. Thompson ER, Gorringe KL, Rowley SM, Li N, McInerny S, Wong-Brown MW, et al.; Lifepool Investigators. Reevaluation of the BRCA2 truncating allele c.9976A > T (p.Lys3326Ter) in a familial breast cancer context. Sci Rep. 2015;5(1):14800. doi:.https://doi.org/10.1038/srep14800
  41. Meeks HD, Song H, Michailidou K, Bolla MK, Dennis J, Wang Q, et al.; EMBRACE; kConFab Investigators; Australia Ovarian Cancer Study Group; HEBON; GEMO Study Collaborators; OCGN; PRostate cancer AssoCiation group To Investigate Cancer Associated aLterations in the genome. BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. J Natl Cancer Inst. 2016;108(2):djv315. doi:.https://doi.org/10.1093/jnci/djv315
  42. Rafnar T, Sigurjonsdottir GR, Stacey SN, Halldorsson G, Sulem P, Pardo LM, et al. Association of BRCA2 K3326* With Small Cell Lung Cancer and Squamous Cell Cancer of the Skin. J Natl Cancer Inst. 2018;110(9):967–74. doi:.https://doi.org/10.1093/jnci/djy002
  43. Karami F, Mehdipour P. A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. BioMed Res Int. 2013;2013:928562. doi:.https://doi.org/10.1155/2013/928562
  44. Koumpis C, Dimitrakakis C, Antsaklis A, Royer R, Zhang S, Narod SA, et al. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Greece. Hered Cancer Clin Pract. 2011;9(1):10. doi:.https://doi.org/10.1186/1897-4287-9-10
  45. Decker B, Allen J, Luccarini C, Pooley KA, Shah M, Bolla MK, et al. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks. J Med Genet. 2017;54(11):732–41. doi:.https://doi.org/10.1136/jmedgenet-2017-104588
  46. Kraus C, Hoyer J, Vasileiou G, Wunderle M, Lux MP, Fasching PA, et al. Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2. Int J Cancer. 2017;140(1):95–102. doi:.https://doi.org/10.1002/ijc.30428
  47. Kushnir A, Laitman Y, Shimon SP, Berger R, Friedman E. Germline mutations in RAD51C in Jewish high cancer risk families. Breast Cancer Res Treat. 2012;136(3):869–74. doi:.https://doi.org/10.1007/s10549-012-2317-9
  48. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410–4. doi:.https://doi.org/10.1038/ng.569
  49. Somyajit K, Mishra A, Jameei A, Nagaraju G. Enhanced non-homologous end joining contributes toward synthetic lethality of pathological RAD51C mutants with poly (ADP-ribose) polymerase. Carcinogenesis. 2015;36(1):13–24. doi:.https://doi.org/10.1093/carcin/bgu211
  50. Somyajit K, Subramanya S, Nagaraju G. Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem. 2012;287(5):3366–80. doi:.https://doi.org/10.1074/jbc.M111.311241
  51. Gao P, Ma N, Li M, Tian QB, Liu DW. Functional variants in NBS1 and cancer risk: evidence from a meta-analysis of 60 publications with 111 individual studies. Mutagenesis. 2013;28(6):683–97. doi:.https://doi.org/10.1093/mutage/get048
  52. Shimelis H, Mesman RLS, Von Nicolai C, Ehlen A, Guidugli L, Martin C, et al.; for kConFab/AOCS Investigators; for NBCS Collaborators. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Res. 2017;77(11):2789–99. doi:.https://doi.org/10.1158/0008-5472.CAN-16-2568
  53. Kinnersley B, Kamatani Y, Labussière M, Wang Y, Galan P, Mokhtari K, et al. Search for new loci and low-frequency variants influencing glioma risk by exome-array analysis. Eur J Hum Genet. 2016;24(5):717–24. doi:.https://doi.org/10.1038/ejhg.2015.170
  54. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, et al.; Breast Cancer Susceptibility Collaboration (UK). Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38(11):1239–41. doi:.https://doi.org/10.1038/ng1902
  55. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001;105(1):149–60. doi:.https://doi.org/10.1016/S0092-8674(01)00304-X
  56. Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S, et al. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA. 2004;101(8):2357–62. doi:.. Correction in: Natl Acad Sci USA. 2004;101(17):6834. doi:https://doi.org/10.1073/pnas.0308717101
  57. Roeb W, Higgins J, King MC. Response to DNA damage of CHEK2 missense mutations in familial breast cancer. Hum Mol Genet. 2012;21(12):2738–44. doi:.https://doi.org/10.1093/hmg/dds101
  58. Yamamoto Y, Miyamoto M, Tatsuda D, Kubo M, Nakagama H, Nakamura Y, et al. A rare polymorphic variant of NBS1 reduces DNA repair activity and elevates chromosomal instability. Cancer Res. 2014;74(14):3707–15. doi:.https://doi.org/10.1158/0008-5472.CAN-13-3037
  59. di Masi A, Viganotti M, Polticelli F, Ascenzi P, Tanzarella C, Antoccia A. The R215W mutation in NBS1 impairs gamma-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients. Biochem Biophys Res Commun. 2008;369(3):835–40. doi:.https://doi.org/10.1016/j.bbrc.2008.02.129
  60. Schröder-Heurich B, Bogdanova N, Wieland B, Xie X, Noskowicz M, Park-Simon TW, et al. Functional deficiency of NBN, the Nijmegen breakage syndrome protein, in a p.R215W mutant breast cancer cell line. BMC Cancer. 2014;14(1):434. doi:.https://doi.org/10.1186/1471-2407-14-434
  61. King MC, Levy-Lahad E, Lahad A. Population-based screening for BRCA1 and BRCA2: 2014 Lasker Award. JAMA. 2014;312(11):1091–2. doi:.https://doi.org/10.1001/jama.2014.12483
  62. Nelson HD, Pappas M, Zakher B, Mitchell JP, Okinaka-Hu L, Fu R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S. Preventive Services Task Force recommendation. Ann Intern Med. 2014;160(4):255–66. doi:.https://doi.org/10.7326/M13-1684
  63. Maxwell KN, Domchek SM, Nathanson KL, Robson ME. Population Frequency of Germline BRCA1/2 Mutations. J Clin Oncol. 2016;34(34):4183–5. doi:.https://doi.org/10.1200/JCO.2016.67.0554
  64. Linderman MD, Nielsen DE, Green RC. Personal Genome Sequencing in Ostensibly Healthy Individuals and the PeopleSeq Consortium. J Pers Med. 2016;6(2):14. doi:.https://doi.org/10.3390/jpm6020014
  65. Manickam K, Buchanan AH, Schwartz MLB, Hallquist MLG, Williams JL, Rahm AK, et al. Exome Sequencing-Based Screening for BRCA1/2 Expected Pathogenic Variants Among Adult Biobank Participants. JAMA Netw Open. 2018;1(5):e182140. doi:.https://doi.org/10.1001/jamanetworkopen.2018.2140
  66. Azzollini J, Scuvera G, Bruno E, Pasanisi P, Zaffaroni D, Calvello M, et al. Mutation detection rates associated with specific selection criteria for BRCA1/2 testing in 1854 high-risk families: A monocentric Italian study. Eur J Intern Med. 2016;32:65–71. doi:.https://doi.org/10.1016/j.ejim.2016.03.010
  67. Cipollini G, Tommasi S, Paradiso A, Aretini P, Bonatti F, Brunetti I, et al. Genetic alterations in hereditary breast cancer. Ann Oncol. 2004;15(Suppl 1):i7–13. doi:.https://doi.org/10.1093/annonc/mdh651
  68. Santonocito C, Scapaticci M, Guarino D, Bartolini A, Minucci A, Concolino P, et al. Identification of twenty-nine novel germline unclassified variants of BRCA1 and BRCA2 genes in 1400 Italian individuals. Breast. 2017;36:74–8. doi:.https://doi.org/10.1016/j.breast.2017.09.007
  69. Nedelcu R, Liede A, Aubé J, Finch A, Kwan E, Jack E, et al. BRCA mutations in Italian breast/ovarian cancer families. Eur J Hum Genet. 2002;10(2):150–2. doi:.https://doi.org/10.1038/sj.ejhg.5200755
  70. Zhang S, Royer R, Li S, McLaughlin JR, Rosen B, Risch HA, et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol Oncol. 2011;121(2):353–7. doi:.https://doi.org/10.1016/j.ygyno.2011.01.020
  71. Risch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Kwan E, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet. 2001;68(3):700–10. doi:.https://doi.org/10.1086/318787
  72. Kaufman B, Laitman Y, Gronwald J, Lubinski J, Friedman E. Haplotype of the C61G BRCA1 mutation in Polish and Jewish individuals. Genet Test Mol Biomarkers. 2009;13(4):465–9. doi:.https://doi.org/10.1089/gtmb.2009.0001
  73. Zuradelli M, Peissel B, Manoukian S, Zaffaroni D, Barile M, Pensotti V, et al. Four new cases of double heterozygosity for BRCA1 and BRCA2 gene mutations: clinical, pathological, and family characteristics. Breast Cancer Res Treat. 2010;124(1):251–8. doi:.https://doi.org/10.1007/s10549-010-0853-8
  74. Marchetti C, De Leo R, Musella A, D’Indinosante M, Capoluongo E, Minucci A, et al. BRCA Mutation Status to Personalize Management of Recurrent Ovarian Cancer: A Multicenter Study. Ann Surg Oncol. 2018;25(12):3701–8. doi:.https://doi.org/10.1245/s10434-018-6700-6
  75. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al.; American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15(7):565–74. doi:.https://doi.org/10.1038/gim.2013.73
  76. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55. doi:.. Correction in: Genet Med. 2017;19:484. doi:https://doi.org/10.1038/gim.2016.190
  77. Hauke J, Horvath J, Groß E, Gehrig A, Honisch E, Hackmann K, et al. Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med. 2018;7(4):1349–58. doi:.https://doi.org/10.1002/cam4.1376
  78. Natarajan P, Gold NB, Bick AG, McLaughlin H, Kraft P, Rehm HL, et al. Aggregate penetrance of genomic variants for actionable disorders in European and African Americans. Sci Transl Med. 2016;8(364):364ra151. doi:.https://doi.org/10.1126/scitranslmed.aag2367
  79. Lawrence L, Sincan M, Markello T, Adams DR, Gill F, Godfrey R, et al. The implications of familial incidental findings from exome sequencing: the NIH Undiagnosed Diseases Program experience. Genet Med. 2014;16(10):741–50. doi:.https://doi.org/10.1038/gim.2014.29
  80. Jurgens J, Ling H, Hetrick K, Pugh E, Schiettecatte F, Doheny K, et al. Assessment of incidental findings in 232 whole-exome sequences from the Baylor-Hopkins Center for Mendelian Genomics. Genet Med. 2015;17(10):782–8. doi:.https://doi.org/10.1038/gim.2014.196
  81. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312(18):1870–9. doi:.https://doi.org/10.1001/jama.2014.14601
  82. Olfson E, Cottrell CE, Davidson NO, Gurnett CA, Heusel JW, Stitziel NO, et al. Identification of Medically Actionable Secondary Findings in the 1000 Genomes. PLoS One. 2015;10(9):e0135193. doi:.https://doi.org/10.1371/journal.pone.0135193
  83. Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696–704. doi:.https://doi.org/10.1038/gim.2015.148
  84. Maillet P, Chappuis PO, Khoshbeen-Boudal M, Sciretta V, Sappino AP ; SIAK Network for Cancer Predisposition Testing and Counseling. Twenty-three novel BRCA1 and BRCA2 sequence variations identified in a cohort of Swiss breast and ovarian cancer families. Cancer Genet Cytogenet. 2006;169(1):62–8. doi:.https://doi.org/10.1016/j.cancergencyto.2006.03.010
  85. Garvin AM, Attenhofer-Haner M, Scott RJ. BRCA1 and BRCA2 mutation analysis in 86 early onset breast/ovarian cancer patients. J Med Genet. 1997;34(12):990–5. doi:.https://doi.org/10.1136/jmg.34.12.990
  86. Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, Caliebe A, et al. Correlation between genetic and geographic structure in Europe. Curr Biol. 2008;18(16):1241–8. doi:.https://doi.org/10.1016/j.cub.2008.07.049
  87. Bodian DL, McCutcheon JN, Kothiyal P, Huddleston KC, Iyer RK, Vockley JG, et al. Germline variation in cancer-susceptibility genes in a healthy, ancestrally diverse cohort: implications for individual genome sequencing. PLoS One. 2014;9(4):e94554. doi:.https://doi.org/10.1371/journal.pone.0094554
  88. Thompson ER, Rowley SM, Li N, McInerny S, Devereux L, Wong-Brown MW, et al. Panel Testing for Familial Breast Cancer: Calibrating the Tension Between Research and Clinical Care. J Clin Oncol. 2016;34(13):1455–9. doi:.https://doi.org/10.1200/JCO.2015.63.7454
  89. Tang CS, Dattani S, So MT, Cherny SS, Tam PKH, Sham PC, et al. Actionable secondary findings from whole-genome sequencing of 954 East Asians. Hum Genet. 2018;137(1):31–7. doi:.https://doi.org/10.1007/s00439-017-1852-1
  90. Judkins T, Rosenthal E, Arnell C, Burbidge LA, Geary W, Barrus T, et al. Clinical significance of large rearrangements in BRCA1 and BRCA2. Cancer. 2012;118(21):5210–6. doi:.https://doi.org/10.1002/cncr.27556
  91. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, et al. Genes mirror geography within Europe. Nature. 2008;456(7218):98–101. doi:.https://doi.org/10.1038/nature07331
  92. Einarsdóttir K, Humphreys K, Bonnard C, Palmgren J, Iles MM, Sjölander A, et al. Linkage disequilibrium mapping of CHEK2: common variation and breast cancer risk. PLoS Med. 2006;3(6):e168. doi:.https://doi.org/10.1371/journal.pmed.0030168
  93. Kaufman B, Laitman Y, Gronwald J, Winqvist R, Irmejs A, Lubinski J, et al. Haplotypes of the I157T CHEK2 germline mutation in ethnically diverse populations. Fam Cancer. 2009;8(4):473–8. doi:.https://doi.org/10.1007/s10689-009-9269-1

Most read articles by the same author(s)