Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 2122 (2019)

Extracellular matrix: a new player in memory maintenance and psychiatric disorders

  • Dominik R. Bach
  • Steven A. Brown
  • Birgit Kleim
  • Shiva K. Tyagarajan
DOI
https://doi.org/10.4414/smw.2019.20060
Cite this as:
Swiss Med Wkly. 2019;149:w20060
Published
02.06.2019

Summary

How the brain performs higher cognitive functions such as learning and memory is traditionally studied by investigating how neurons work. However, over the past two decades, evidence has accumulated which suggests that components of the extracellular matrix contribute to the storing of information through learning processes. Thus, matrix regulation – either changes in the protein composition of the perineural network surrounding neurons or cleavage of this network by specific metalloproteases – could be relevant to the many psychiatric disorders that are shaped by previous experiences, i.e. by learning and plasticity. This includes disorders which are a direct consequence of past experiences and ones where previous experiences constitute a risk factor. Psychotherapy is one of the first-line treatments for most psychiatric conditions, and involves learning and plasticity. Here, we review selected publications pertaining to experience dependence in psychiatric conditions and summarise evidence of roles for the extracellular matrix in learning and memory. We then suggest how control of the extracellular matrix could be leveraged for innovative treatments and, more generally, discuss possible aetiological effects of extracellular matrix alterations in psychiatric disorders.

References

  1. Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998;21(5):207–15. doi:.https://doi.org/10.1016/S0166-2236(98)01261-2
  2. Gundelfinger ED, Frischknecht R, Choquet D, Heine M. Converting juvenile into adult plasticity: a role for the brain’s extracellular matrix. Eur J Neurosci. 2010;31(12):2156–65. doi:.https://doi.org/10.1111/j.1460-9568.2010.07253.x
  3. Ethell IM, Ethell DW. Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res. 2007;85(13):2813–23. doi:.https://doi.org/10.1002/jnr.21273
  4. Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci. 2012;13(11):743–57. doi:.https://doi.org/10.1038/nrn3320
  5. Gogolla N, Caroni P, Lüthi A, Herry C. Perineuronal nets protect fear memories from erasure. Science. 2009;325(5945):1258–61. doi:.https://doi.org/10.1126/science.1174146
  6. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313(5790):1093–7. doi:.https://doi.org/10.1126/science.1128134
  7. Stoker AK, Markou A. Neurobiological Bases of Cue- and Nicotine-induced Reinstatement of Nicotine Seeking: Implications for the Development of Smoking Cessation Medications. Curr Top Behav Neurosci. 2015;24:125–54. doi:.https://doi.org/10.1007/978-3-319-13482-6_5
  8. Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA, Zaslavsky AM, et al. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch Gen Psychiatry. 2010;67(2):113–23. doi:.https://doi.org/10.1001/archgenpsychiatry.2009.186
  9. Li M, D’Arcy C, Meng X. Maltreatment in childhood substantially increases the risk of adult depression and anxiety in prospective cohort studies: systematic review, meta-analysis, and proportional attributable fractions. Psychol Med. 2016;46(4):717–30. doi:.https://doi.org/10.1017/S0033291715002743
  10. Agid O, Shapira B, Zislin J, Ritsner M, Hanin B, Murad H, et al. Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatry. 1999;4(2):163–72. doi:.https://doi.org/10.1038/sj.mp.4000473
  11. Abel KM, Heuvelman HP, Jörgensen L, Magnusson C, Wicks S, Susser E, et al. Severe bereavement stress during the prenatal and childhood periods and risk of psychosis in later life: population based cohort study. BMJ. 2014;348(jan21 2):f7679. doi:.https://doi.org/10.1136/bmj.f7679
  12. Mayford M, Siegelbaum SA, Kandel ER. Synapses and memory storage. Cold Spring Harb Perspect Biol. 2012;4(6):a005751. doi:.https://doi.org/10.1101/cshperspect.a005751
  13. Hofmann SG, Otto MW, Pollack MH, Smits JA. D-cycloserine augmentation of cognitive behavioral therapy for anxiety disorders: an update. Curr Psychiatry Rep. 2015;17(1):532. doi:.https://doi.org/10.1007/s11920-014-0532-2
  14. Tulving E, Donaldson W. Episodic and semantic memory. In: Organization of Memory. Cambridge, MA: Academic Press Inc; 1972. pp 381–403.
  15. Basu J, Siegelbaum SA. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harb Perspect Biol. 2015;7(11):a021733. doi:.https://doi.org/10.1101/cshperspect.a021733
  16. LeDoux JE. Coming to terms with fear. Proc Natl Acad Sci USA. 2014;111(8):2871–8. doi:.https://doi.org/10.1073/pnas.1400335111
  17. Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci. 2015;18(10):1394–404. doi:.https://doi.org/10.1038/nn.4101
  18. Castegnetti G, Tzovara A, Staib M, Paulus PC, Hofer N, Bach DR. Modeling fear-conditioned bradycardia in humans. Psychophysiology. 2016;53(6):930–9. doi:.https://doi.org/10.1111/psyp.12637
  19. Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, et al. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci. 2004;24(15):3810–5. doi:.https://doi.org/10.1523/JNEUROSCI.4100-03.2004
  20. Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Lüthi A. Neuronal circuits of fear extinction. Eur J Neurosci. 2010;31(4):599–612. doi:.https://doi.org/10.1111/j.1460-9568.2010.07101.x
  21. Dunsmoor JE, Niv Y, Daw N, Phelps EA. Rethinking Extinction. Neuron. 2015;88(1):47–63. doi:.https://doi.org/10.1016/j.neuron.2015.09.028
  22. Gershman SJ, Blei DM, Niv Y. Context, learning, and extinction. Psychol Rev. 2010;117(1):197–209. doi:.https://doi.org/10.1037/a0017808
  23. Grewe BF, Gründemann J, Kitch LJ, Lecoq JA, Parker JG, Marshall JD, et al. Neural ensemble dynamics underlying a long-term associative memory. Nature. 2017;543(7647):670–5. doi:.https://doi.org/10.1038/nature21682
  24. Gershman SJ, Jones CE, Norman KA, Monfils MH, Niv Y. Gradual extinction prevents the return of fear: implications for the discovery of state. Front Behav Neurosci. 2013;7:164. doi:.https://doi.org/10.3389/fnbeh.2013.00164
  25. Connor DA, Gould TJ. The role of working memory and declarative memory in trace conditioning. Neurobiol Learn Mem. 2016;134(Pt B):193–209. doi:.https://doi.org/10.1016/j.nlm.2016.07.009
  26. Chaaya N, Battle AR, Johnson LR. An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus. Neurosci Biobehav Rev. 2018;92:43–54. doi:.https://doi.org/10.1016/j.neubiorev.2018.05.013
  27. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406(6797):722–6. doi:.https://doi.org/10.1038/35021052
  28. Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ. Stability of recent and remote contextual fear memory. Learn Mem. 2006;13(4):451–7. doi:.https://doi.org/10.1101/lm.183406
  29. Kindt M. The surprising subtleties of changing fear memory: a challenge for translational science. Philos Trans R Soc Lond B Biol Sci. 2018;373(1742):20170033. doi:.https://doi.org/10.1098/rstb.2017.0033
  30. Lin HC, Mao SC, Gean PW. Effects of intra-amygdala infusion of CB1 receptor agonists on the reconsolidation of fear-potentiated startle. Learn Mem. 2006;13(3):316–21. doi:.https://doi.org/10.1101/lm.217006
  31. Pedreira ME, Pérez-Cuesta LM, Maldonado H. Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learn Mem. 2004;11(5):579–85. doi:.https://doi.org/10.1101/lm.76904
  32. Misanin JR, Miller RR, Lewis DJ. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science. 1968;160(3827):554–5. doi:.https://doi.org/10.1126/science.160.3827.554
  33. Bustos SG, Maldonado H, Molina VA. Midazolam disrupts fear memory reconsolidation. Neuroscience. 2006;139(3):831–42. doi:.https://doi.org/10.1016/j.neuroscience.2005.12.064
  34. Przybyslawski J, Roullet P, Sara SJ. Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J Neurosci. 1999;19(15):6623–8. doi:.https://doi.org/10.1523/JNEUROSCI.19-15-06623.1999
  35. Kroes MC, Tendolkar I, van Wingen GA, van Waarde JA, Strange BA, Fernández G. An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans. Nat Neurosci. 2014;17(2):204–6. doi:.https://doi.org/10.1038/nn.3609
  36. Kindt M, Soeter M, Vervliet B. Beyond extinction: erasing human fear responses and preventing the return of fear. Nat Neurosci. 2009;12(3):256–8. doi:.https://doi.org/10.1038/nn.2271
  37. Visser RM, Scholte HS, Kindt M. Associative learning increases trial-by-trial similarity of BOLD-MRI patterns. J Neurosci. 2011;31(33):12021–8. doi:.https://doi.org/10.1523/JNEUROSCI.2178-11.2011
  38. Kindt M, Soeter M, Sevenster D. Disrupting reconsolidation of fear memory in humans by a noradrenergic β-blocker. J Vis Exp. 2014;(94). doi:.https://doi.org/10.3791/52151
  39. Walsh KH, Das RK, Saladin ME, Kamboj SK. Modulation of naturalistic maladaptive memories using behavioural and pharmacological reconsolidation-interfering strategies: a systematic review and meta-analysis of clinical and ‘sub-clinical’ studies. Psychopharmacology (Berl). 2018;235(9):2507–27. doi:.https://doi.org/10.1007/s00213-018-4983-8
  40. Kredlow MA, Unger LD, Otto MW. Harnessing reconsolidation to weaken fear and appetitive memories: A meta-analysis of post-retrieval extinction effects. Psychol Bull. 2016;142(3):314–36. doi:.https://doi.org/10.1037/bul0000034
  41. Brunet A, Saumier D, Liu A, Streiner DL, Tremblay J, Pitman RK. Reduction of PTSD Symptoms With Pre-Reactivation Propranolol Therapy: A Randomized Controlled Trial. Am J Psychiatry. 2018;175(5):427–33. doi:.https://doi.org/10.1176/appi.ajp.2017.17050481
  42. Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit. 2009;15(2):RA32–40.
  43. Watson SL, Lee MH, Barker NH. Interventions for recurrent corneal erosions. Cochrane Database Syst Rev. 2012;(9):CD001861.
  44. Golub LM, Elburki MS, Walker C, Ryan M, Sorsa T, Tenenbaum H, et al. Non-antibacterial tetracycline formulations: host-modulators in the treatment of periodontitis and relevant systemic diseases. Int Dent J. 2016;66(3):127–35. doi:.https://doi.org/10.1111/idj.12221
  45. Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, et al. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem. 2006;96(5):1227–41. doi:.https://doi.org/10.1111/j.1471-4159.2005.03565.x
  46. Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST. Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience. 2010;166(2):508–21. doi:.https://doi.org/10.1016/j.neuroscience.2009.12.061
  47. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC. Storage of spatial information by the maintenance mechanism of LTP. Science. 2006;313(5790):1141–4. doi:.https://doi.org/10.1126/science.1128657
  48. Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, et al. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci. 2006;26(7):1923–34. doi:.https://doi.org/10.1523/JNEUROSCI.4359-05.2006
  49. Meighan PC, Meighan SE, Davis CJ, Wright JW, Harding JW. Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of schaffer collateral/CA1 synapses. J Neurochem. 2007;102(6):2085–96. doi:.https://doi.org/10.1111/j.1471-4159.2007.04682.x
  50. Wang XB, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW. Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci USA. 2008;105(49):19520–5. doi:.https://doi.org/10.1073/pnas.0807248105
  51. Gorkiewicz T, Balcerzyk M, Kaczmarek L, Knapska E. Matrix metalloproteinase 9 (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala. Front Cell Neurosci. 2015;9:73. doi:.https://doi.org/10.3389/fncel.2015.00073
  52. Okulski P, Jay TM, Jaworski J, Duniec K, Dzwonek J, Konopacki FA, et al. TIMP-1 abolishes MMP-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol Psychiatry. 2007;62(4):359–62. doi:.https://doi.org/10.1016/j.biopsych.2006.09.012
  53. Dziembowska M, Milek J, Janusz A, Rejmak E, Romanowska E, Gorkiewicz T, et al. Activity-dependent local translation of matrix metalloproteinase-9. J Neurosci. 2012;32(42):14538–47. doi:.https://doi.org/10.1523/JNEUROSCI.6028-11.2012
  54. Gawlak M, Górkiewicz T, Gorlewicz A, Konopacki FA, Kaczmarek L, Wilczynski GM. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. Neuroscience. 2009;158(1):167–76. doi:.https://doi.org/10.1016/j.neuroscience.2008.05.045
  55. Wiera G, Nowak D, van Hove I, Dziegiel P, Moons L, Mozrzymas JW. Mechanisms of NMDA Receptor- and Voltage-Gated L-Type Calcium Channel-Dependent Hippocampal LTP Critically Rely on Proteolysis That Is Mediated by Distinct Metalloproteinases. J Neurosci. 2017;37(5):1240–56. doi:.https://doi.org/10.1523/JNEUROSCI.2170-16.2016
  56. Bijata M, Labus J, Guseva D, Stawarski M, Butzlaff M, Dzwonek J, et al. Synaptic Remodeling Depends on Signaling between Serotonin Receptors and the Extracellular Matrix. Cell Rep. 2017;19(9):1767–82. doi:.https://doi.org/10.1016/j.celrep.2017.05.023
  57. Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem. 2016;139(Suppl 2):91–114. doi:.https://doi.org/10.1111/jnc.13415
  58. Nagy V, Bozdagi O, Huntley GW. The extracellular protease matrix metalloproteinase-9 is activated by inhibitory avoidance learning and required for long-term memory. Learn Mem. 2007;14(10):655–64. doi:.https://doi.org/10.1101/lm.678307
  59. Knapska E, Lioudyno V, Kiryk A, Mikosz M, Górkiewicz T, Michaluk P, et al. Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala. J Neurosci. 2013;33(36):14591–600. doi:.https://doi.org/10.1523/JNEUROSCI.5239-12.2013
  60. Brown TE, Wilson AR, Cocking DL, Sorg BA. Inhibition of matrix metalloproteinase activity disrupts reconsolidation but not consolidation of a fear memory. Neurobiol Learn Mem. 2009;91(1):66–72. doi:.https://doi.org/10.1016/j.nlm.2008.09.003
  61. Bach DR, Tzovara A, Vunder J. Blocking human fear memory with the matrix metalloproteinase inhibitor doxycycline. Mol Psychiatry. 2018;23(7):1584–9.
  62. Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L. Perineuronal nets: past and present. Trends Neurosci. 1998;21(12):510–5. doi:.https://doi.org/10.1016/S0166-2236(98)01298-3
  63. Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JC, et al. Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity. J Neurosci. 2016;36(45):11459–68. doi:.https://doi.org/10.1523/JNEUROSCI.2351-16.2016
  64. Wiesel TN, Hubel DH. Effects of Visual Deprivation on Morphology and Physiology of Cells in the Cats Lateral Geniculate Body. J Neurophysiol. 1963;26(6):978–93. doi:.https://doi.org/10.1152/jn.1963.26.6.978
  65. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298(5596):1248–51. doi:.https://doi.org/10.1126/science.1072699
  66. Dityatev A, Brückner G, Dityateva G, Grosche J, Kleene R, Schachner M. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev Neurobiol. 2007;67(5):570–88. doi:.https://doi.org/10.1002/dneu.20361
  67. Kim JH, Richardson R. A developmental dissociation of context and GABA effects on extinguished fear in rats. Behav Neurosci. 2007;121(1):131–9. doi:.https://doi.org/10.1037/0735-7044.121.1.131
  68. Kim JH, Richardson R. A developmental dissociation in reinstatement of an extinguished fear response in rats. Neurobiol Learn Mem. 2007;88(1):48–57. doi:.https://doi.org/10.1016/j.nlm.2007.03.004
  69. Kim JH, Richardson R. The effect of temporary amygdala inactivation on extinction and reextinction of fear in the developing rat: unlearning as a potential mechanism for extinction early in development. J Neurosci. 2008;28(6):1282–90. doi:.https://doi.org/10.1523/JNEUROSCI.4736-07.2008
  70. Happel MF, Niekisch H, Castiblanco Rivera LL, Ohl FW, Deliano M, Frischknecht R. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proc Natl Acad Sci USA. 2014;111(7):2800–5. doi:.https://doi.org/10.1073/pnas.1310272111
  71. Banerjee SB, Gutzeit VA, Baman J, Aoued HS, Doshi NK, Liu RC, et al. Perineuronal Nets in the Adult Sensory Cortex Are Necessary for Fear Learning. Neuron. 2017;95(1):169–179.e3. doi:.https://doi.org/10.1016/j.neuron.2017.06.007
  72. Tsien RY. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci USA. 2013;110(30):12456–61. doi:.https://doi.org/10.1073/pnas.1310158110
  73. Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M, et al. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res. 1999;842(1):15–29. doi:.https://doi.org/10.1016/S0006-8993(99)01784-9
  74. Frischknecht R, Chang KJ, Rasband MN, Seidenbecher CI. Neural ECM molecules in axonal and synaptic homeostatic plasticity. Prog Brain Res. 2014;214:81–100. doi:.https://doi.org/10.1016/B978-0-444-63486-3.00004-9
  75. Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res. 2015;167(1-3):18–27. doi:.https://doi.org/10.1016/j.schres.2014.12.040
  76. Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci. 2009;12(7):897–904. doi:.https://doi.org/10.1038/nn.2338
  77. Chang MC, Park JM, Pelkey KA, Grabenstatter HL, Xu D, Linden DJ, et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci. 2010;13(9):1090–7. doi:.https://doi.org/10.1038/nn.2621
  78. Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci. 2007;27(38):10165–75. doi:.https://doi.org/10.1523/JNEUROSCI.1772-07.2007
  79. Bannai H, Lévi S, Schweizer C, Inoue T, Launey T, Racine V, et al. Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron. 2009;62(5):670–82. doi:.https://doi.org/10.1016/j.neuron.2009.04.023
  80. Conant K, Allen M, Lim ST. Activity dependent CAM cleavage and neurotransmission. Front Cell Neurosci. 2015;9:305. doi:.https://doi.org/10.3389/fncel.2015.00305
  81. Sonderegger P, Matsumoto-Miyai K. Activity-controlled proteolytic cleavage at the synapse. Trends Neurosci. 2014;37(8):413–23. doi:.https://doi.org/10.1016/j.tins.2014.05.007
  82. Carstens KE, Dudek SM. Regulation of synaptic plasticity in hippocampal area CA2. Curr Opin Neurobiol. 2019;54:194–9.
  83. Pollock E, Everest M, Brown A, Poulter MO. Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiol Dis. 2014;70:21–31. doi:.https://doi.org/10.1016/j.nbd.2014.06.003
  84. Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25(10):1073–188. doi:.https://doi.org/10.1002/hipo.22488
  85. Sun ZY, Bozzelli PL, Caccavano A, Allen M, Balmuth J, Vicini S, et al. Disruption of perineuronal nets increases the frequency of sharp wave ripple events. Hippocampus. 2018;28(1):42–52. doi:.https://doi.org/10.1002/hipo.22804
  86. Niethard N, Burgalossi A, Born J. Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity. Front Neural Circuits. 2017;11:65. doi:.https://doi.org/10.3389/fncir.2017.00065
  87. Khodagholy D, Gelinas JN, Buzsáki G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science. 2017;358(6361):369–72. doi:.https://doi.org/10.1126/science.aan6203
  88. Norimoto H, Makino K, Gao M, Shikano Y, Okamoto K, Ishikawa T, et al. Hippocampal ripples down-regulate synapses. Science. 2018;359(6383):1524–7. doi:.https://doi.org/10.1126/science.aao0702
  89. Xia Z, Storm D. Role of circadian rhythm and REM sleep for memory consolidation. Neurosci Res. 2017;118:13–20. doi:.https://doi.org/10.1016/j.neures.2017.04.011
  90. Wang T, Liao Y, Sun Q, Tang H, Wang G, Zhao F, et al. Upregulation of Matrix Metalloproteinase-9 in Primary Cultured Rat Astrocytes Induced by 2-Chloroethanol Via MAPK Signal Pathways. Front Cell Neurosci. 2017;11:218. doi:.https://doi.org/10.3389/fncel.2017.00218
  91. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S, et al. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry. 2013;74(6):427–35. doi:.https://doi.org/10.1016/j.biopsych.2013.05.007
  92. Pantazopoulos H, Markota M, Jaquet F, Ghosh D, Wallin A, Santos A, et al. Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry. 2015;5(1):e496. doi:.https://doi.org/10.1038/tp.2014.128
  93. Pantazopoulos H, Woo TU, Lim MP, Lange N, Berretta S. Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry. 2010;67(2):155–66. doi:.https://doi.org/10.1001/archgenpsychiatry.2009.196
  94. Pantazopoulos H, Berretta S. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast. 2016;2016:9847696. doi:.https://doi.org/10.1155/2016/9847696
  95. Lorenzo Bozzelli P, Alaiyed S, Kim E, Villapol S, Conant K. Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics. Neural Plast. 2018;2018:5735789. doi:.https://doi.org/10.1155/2018/5735789
  96. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini VJ, Dwivedi Y, Grayson DR, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57(11):1061–9. doi:.https://doi.org/10.1001/archpsyc.57.11.1061
  97. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7. doi:.https://doi.org/10.1038/nature13595
  98. Lepeta K, Purzycka KJ, Pachulska-Wieczorek K, Mitjans M, Begemann M, Vafadari B, et al. A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms. EMBO Mol Med. 2017;9(8):1100–16. doi:.https://doi.org/10.15252/emmm.201707723
  99. Fatemi SH, Snow AV, Stary JM, Araghi-Niknam M, Reutiman TJ, Lee S, et al. Reelin signaling is impaired in autism. Biol Psychiatry. 2005;57(7):777–87. doi:.https://doi.org/10.1016/j.biopsych.2004.12.018
  100. Stefaniuk M, Beroun A, Lebitko T, Markina O, Leski S, Meyza K, et al. Matrix Metalloproteinase-9 and Synaptic Plasticity in the Central Amygdala in Control of Alcohol-Seeking Behavior. Biol Psychiatry. 2017;81(11):907–17. doi:.https://doi.org/10.1016/j.biopsych.2016.12.026
  101. Bushey D, Tononi G, Cirelli C. The Drosophila fragile X mental retardation gene regulates sleep need. J Neurosci. 2009;29(7):1948–61. doi:.https://doi.org/10.1523/JNEUROSCI.4830-08.2009
  102. Gatto CL, Broadie K. The fragile X mental retardation protein in circadian rhythmicity and memory consolidation. Mol Neurobiol. 2009;39(2):107–29. doi:.https://doi.org/10.1007/s12035-009-8057-0
  103. Do KQ, Cuenod M, Hensch TK. Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophr Bull. 2015;41(4):835–46. doi:.https://doi.org/10.1093/schbul/sbv065
  104. Holmes EA, Craske MG, Graybiel AM. Psychological treatments: A call for mental-health science. Nature. 2014;511(7509):287–9. doi:.https://doi.org/10.1038/511287a