Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 2122 (2019)

Designing artificial senses: steps from physiology to clinical implementation

DOI
https://doi.org/10.4414/smw.2019.20061
Cite this as:
Swiss Med Wkly. 2019;149:w20061
Published
02.06.2019

Abstract

Our senses are the main information channels through which we perceive and interact with the world. Consequently, the physical and social functioning of patients suffering from severe sensory disabilities is limited on several levels. This has motivated the development of a novel therapeutic alternative: “artificial senses”, more commonly known as sensory neuroprostheses.

In order to restore lost function, sensory neuroprostheses attempt to take advantage of the information transfer pathway common to all senses: (i) transduction of the physical stimulus by sensory receptors, (ii) transmission of relevant information to primary sensory areas in the brain by sensory afferents, and (iii) analysis and integration of the information at multiple levels in the central nervous system. Neurosensory deficits might occur upon damage to any of the structures involved in this process. However, damage to the peripheral sensory receptor is often the cause of neurosensory loss. Most sensory neuroprostheses attempt to “replace” the malfunctioning or missing peripheral sensory organ by directly delivering basic sensory information to the brain using electrical currents. If the prosthesis is able to deliver enough consistent information, the brain will be able to correctly interpret it and useful rehabilitation can be achieved.

This review presents the main challenges related to the development, implementation and translation to clinical practice of these devices: (i) sensory information needs to be efficiently delivered to specific neural targets (e.g., peripheral afferents or specific central nuclei); (ii) then the expected physiological response must be evoked and quantified; (iii) the restoration of basic sensory abilities can lead to useful rehabilitation in meaningful everyday activities; (iv) optimal prospects require specific rehabilitation therapy and lifelong medico-technical follow-up.

To conclude, the current state and future of sensory neuroprostheses will be discussed. This will include current clinical and technical challenges, future prospects, and the potential of these devices to improve our fundamental knowledge of sensory physiology and neurosensory deficits.

References

  1. Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in children. Arch Dis Child. 2017;102(9):853–7. doi:.https://doi.org/10.1136/archdischild-2016-310532
  2. Quittner AL, Leibach P, Marciel K. The impact of cochlear implants on young deaf children: new methods to assess cognitive and behavioral development. Arch Otolaryngol Head Neck Surg. 2004;130(5):547–54. doi:.https://doi.org/10.1001/archotol.130.5.547
  3. Bailly D, Dechoulydelenclave MB, Lauwerier L. [Hearing impairment and psychopathological disorders in children and adolescents. Review of the recent literature]. Encephale. 2003;29(4 Pt 1):329–37.
  4. Wiener-Vacher SR, Hamilton DA, Wiener SI. Vestibular activity and cognitive development in children: perspectives. Front Integr Nuerosci. 2013;7:92. doi:.https://doi.org/10.3389/fnint.2013.00092
  5. Cook G, Brown-Wilson C, Forte D. The impact of sensory impairment on social interaction between residents in care homes. Int J Older People Nurs. 2006;1(4):216–24. doi:.https://doi.org/10.1111/j.1748-3743.2006.00034.x
  6. Fritze T, Teipel S, Óvári A, Kilimann I, Witt G, Doblhammer G. Hearing Impairment Affects Dementia Incidence. An Analysis Based on Longitudinal Health Claims Data in Germany. PLoS One. 2016;11(7):e0156876. doi:.https://doi.org/10.1371/journal.pone.0156876
  7. Iwasaki S, Yamasoba T. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System. Aging Dis. 2015;6(1):38–47. doi:.https://doi.org/10.14336/AD.2014.0128
  8. Morgon Banks L, Polack S. The Economic Costs of Exclusion and Gains of Inclusion of People with Disabilities: Evidence from Low and Middle Income Countries. CBM; 2013. Available at: http://disabilitycentre.lshtm.ac.uk/files/2014/07/Costs-of-Exclusion-and-Gains-of-Inclusion-Report.pdf.
  9. WHO. Global costs of unaddressed hearing loss and cost-effectiveness of interventions: a WHO report, 2017. Geneva, Switzerland; 2017.
  10. Brandt T, Dieterich M. The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci. 1999;871(1 OTOLITH FUNCT):293–312. doi:.https://doi.org/10.1111/j.1749-6632.1999.tb09193.x
  11. Lopez C, Blanke O. The thalamocortical vestibular system in animals and humans. Brain Res Brain Res Rev. 2011;67(1-2):119–46. doi:.https://doi.org/10.1016/j.brainresrev.2010.12.002
  12. Şahin MI, Sagers JE, Stankovic KM. Cochlear Implantation: Vast Unmet Need to Address Deafness Globally. Otol Neurotol. 2017;38(6):786–7. doi:.https://doi.org/10.1097/MAO.0000000000001416
  13. Brandli A, Luu CD, Guymer RH, Ayton LN. Progress in the clinical development and utilization of vision prostheses: an update. Eye Brain. 2016;8:15–25.
  14. Rauschecker JP, Shannon RV. Sending sound to the brain. Science. 2002;295(5557):1025–9. doi:.https://doi.org/10.1126/science.1067796
  15. Kiang NY, Moxon EC. Tails of tuning curves of auditory-nerve fibers. J Acoust Soc Am. 1974;55(3):620–30. doi:.https://doi.org/10.1121/1.1914572
  16. Kiang NY, Moxon EC. Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol. 1972;81(5):714–30. doi:.https://doi.org/10.1177/000348947208100513
  17. Gaylor JM, Raman G, Chung M, Lee J, Rao M, Lau J, et al. Cochlear implantation in adults: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2013;139(3):265–72. doi:.https://doi.org/10.1001/jamaoto.2013.1744
  18. Peters BR, Wyss J, Manrique M. Worldwide trends in bilateral cochlear implantation. Laryngoscope. 2010;120(S2, Suppl 2):S17–44. doi:.https://doi.org/10.1002/lary.20859
  19. The Ear Foundation. Cochear Implant Information Sheet. In: Foundation TE, editor. Nottingham, United Kingdom2016.
  20. Brennan-Jones CG, White J, Rush RW, Law J. Auditory-verbal therapy for promoting spoken language development in children with permanent hearing impairments. Cochrane Database Syst Rev. 2014;(3):CD010100. doi:.https://doi.org/10.1002/14651858.CD010100.pub2
  21. Deriaz M, Pelizzone M, Pérez Fornos A. Simultaneous development of 2 oral languages by child cochlear implant recipients. Otol Neurotol. 2014;35(9):1541–4. doi:.https://doi.org/10.1097/MAO.0000000000000497
  22. Shannon RV. Auditory implant research at the House Ear Institute 1989-2013. Hear Res. 2015;322:57–66. doi:.https://doi.org/10.1016/j.heares.2014.11.003
  23. Colletti V. Auditory outcomes in tumor vs. nontumor patients fitted with auditory brainstem implants. Adv Otorhinolaryngol. 2006;64:167–85. doi:.https://doi.org/10.1159/000094651
  24. Humayun MS, Prince M, de Juan E, Jr, Barron Y, Moskowitz M, Klock IB, et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1999;40(1):143–8.
  25. Santos A, Humayun MS, de Juan E, Jr, Greenburg RJ, Marsh MJ, Klock IB, et al. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol. 1997;115(4):511–5. doi:.https://doi.org/10.1001/archopht.1997.01100150513011
  26. Stone JL, Barlow WE, Humayun MS, de Juan E, Jr, Milam AH. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol. 1992;110(11):1634–9. doi:.https://doi.org/10.1001/archopht.1992.01080230134038
  27. da Cruz L, Dorn JD, Humayun MS, Dagnelie G, Handa J, Barale PO, et al.; Argus II Study Group. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology. 2016;123(10):2248–54. doi:.https://doi.org/10.1016/j.ophtha.2016.06.049
  28. Kitiratschky VB, Stingl K, Wilhelm B, Peters T, Besch D, Sachs H, et al. Safety evaluation of “retina implant alpha IMS”--a prospective clinical trial. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2015;253(3):381–7. doi:.https://doi.org/10.1007/s00417-014-2797-x
  29. Sommerhalder J, Pérez Fornos A. Prospects and Limitations of Spatial Resolution. In: Gabel VP, editor. Artificial Vision: A Clinical Guide. 1. Cham, Switzerland: Springer International Publishing Switzerland; 2017. p. 29-45.
  30. Stingl K, Schippert R, Bartz-Schmidt KU, Besch D, Cottriall CL, Edwards TL, et al. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Front Neurosci. 2017;11:445. doi:.https://doi.org/10.3389/fnins.2017.00445
  31. Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, et al. Subretinal Visual Implant Alpha IMS--Clinical trial interim report. Vision Res. 2015;111(Pt B):149–60. doi:.https://doi.org/10.1016/j.visres.2015.03.001
  32. Luo YH, da Cruz L. The Argus(®) II Retinal Prosthesis System. Prog Retin Eye Res. 2016;50:89–107. doi:.https://doi.org/10.1016/j.preteyeres.2015.09.003
  33. Ho AC, Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Handa J, et al.; Argus II Study Group. Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind. Ophthalmology. 2015;122(8):1547–54. doi:.https://doi.org/10.1016/j.ophtha.2015.04.032
  34. Contrera KJ, Choi JS, Blake CR, Betz JF, Niparko JK, Lin FR. Rates of Long-Term Cochlear Implant Use in Children. Otology & neurotology. 2014;35(3):426–30.
  35. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2011;278(1711):1489–97. doi:.https://doi.org/10.1098/rspb.2010.1747
  36. Ahuja AK, Dorn JD, Caspi A, McMahon MJ, Dagnelie G, Dacruz L, et al.; Argus II Study Group. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol. 2011;95(4):539–43. doi:.https://doi.org/10.1136/bjo.2010.179622
  37. Rizzo JF, 3rd, Ayton LN. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force. J Neural Eng. 2014;11(2):020301. doi:.https://doi.org/10.1088/1741-2560/11/2/020301
  38. Fontanarosa J, Treadwell JR, Samson DJ, VanderBeek BL, Schoelles K. AHRQ Technology Assessments. Retinal Prostheses in the Medicare Population. Rockville (MD): Agency for Healthcare Research and Quality (US); 2016.
  39. Cohen B, Suzuki JI. Eye movements induced by ampullary nerve stimulation. Am J Physiol. 1963;204(2):347–51. doi:.https://doi.org/10.1152/ajplegacy.1963.204.2.347
  40. Suzuki JI, Cohen B, Bender MB. Compensatory Eye Movements Induced by Vertical Semicircular Canal Stimulation. Exp Neurol. 1964;9(2):137–60. doi:.https://doi.org/10.1016/0014-4886(64)90013-5
  41. Suzuki JI, Cohen B. Head, Eye, Body and Limb Movements from Semicircular Canal Nerves. Exp Neurol. 1964;10(5):393–405. doi:.https://doi.org/10.1016/0014-4886(64)90031-7
  42. Gong W, Merfeld DM. Prototype neural semicircular canal prosthesis using patterned electrical stimulation. Ann Biomed Eng. 2000;28(5):572–81. doi:.https://doi.org/10.1114/1.293
  43. Lewis RF, Gong W, Ramsey M, Minor L, Boyle R, Merfeld DM. Vestibular adaptation studied with a prosthetic semicircular canal. J Vestib Res. 2002-2003;12(2-3):87–94.
  44. Merfeld DM, Haburcakova C, Gong W, Lewis RF. Chronic vestibulo-ocular reflexes evoked by a vestibular prosthesis. IEEE Trans Biomed Eng. 2007;54(6):1005–15. doi:.https://doi.org/10.1109/TBME.2007.891943
  45. Gong W, Haburcakova C, Merfeld DM. Vestibulo-ocular responses evoked via bilateral electrical stimulation of the lateral semicircular canals. IEEE Trans Biomed Eng. 2008;55(11):2608–19. doi:.https://doi.org/10.1109/TBME.2008.2001294
  46. Lewis RF, Haburcakova C, Gong W, Makary C, Merfeld DM. Vestibuloocular reflex adaptation investigated with chronic motion-modulated electrical stimulation of semicircular canal afferents. J Neurophysiol. 2010;103(2):1066–79. doi:.https://doi.org/10.1152/jn.00241.2009
  47. Lewis RF, Haburcakova C, Gong W, Karmali F, Merfeld DM. Spatial and temporal properties of eye movements produced by electrical stimulation of semicircular canal afferents. J Neurophysiol. 2012;108(5):1511–20. doi:.https://doi.org/10.1152/jn.01029.2011
  48. van de Berg R, Guinand N, Guyot JP, Kingma H, Stokroos RJ. The modified ampullar approach for vestibular implant surgery: feasibility and its first application in a human with a long-term vestibular loss. Front Neurol. 2012;3:18. doi:.https://doi.org/10.3389/fneur.2012.00018
  49. Guyot JP, Sigrist A, Pelizzone M, Feigl GC, Kos MI. Eye movements in response to electrical stimulation of the lateral and superior ampullary nerves. Ann Otol Rhinol Laryngol. 2011;120(2):81–7. doi:.https://doi.org/10.1177/000348941112000202
  50. Feigl GC, Fasel JH, Anderhuber F, Ulz H, Rienmüller R, Guyot JP, et al. Superior vestibular neurectomy: a novel transmeatal approach for a denervation of the superior and lateral semicircular canals. Otol Neurotol. 2009;30(5):586–91. doi:.https://doi.org/10.1097/MAO.0b013e3181ab9164
  51. Feigl G, Kos I, Anderhuber F, Guyot JP, Fasel J. Development of surgical skill with singular neurectomy using human cadaveric temporal bones. Ann Anat. 2008;190(4):316–23. doi:.https://doi.org/10.1016/j.aanat.2008.05.001
  52. Kos MI, Feigl G, Anderhuber F, Wall C, Fasel JH, Guyot JP. Transcanal approach to the singular nerve. Otol Neurotol. 2006;27(4):542–6.
  53. Guyot JP, Sigrist A, Pelizzone M, Kos MI. Adaptation to steady-state electrical stimulation of the vestibular system in humans. Ann Otol Rhinol Laryngol. 2011;120(3):143–9. doi:.https://doi.org/10.1177/000348941112000301
  54. Nguyen TAK, DiGiovanna J, Cavuscens S, Ranieri M, Guinand N, van de Berg R, et al. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation. J Neural Eng. 2016;13(4):046023. doi:.https://doi.org/10.1088/1741-2560/13/4/046023
  55. Guinand N, van de Berg R, Cavuscens S, Stokroos RJ, Ranieri M, Pelizzone M, et al. Vestibular Implants: 8 Years of Experience with Electrical Stimulation of the Vestibular Nerve in 11 Patients with Bilateral Vestibular Loss. ORL J Otorhinolaryngol Relat Spec. 2015;77(4):227–40. doi:.https://doi.org/10.1159/000433554
  56. Pérez Fornos A, Cavuscens S, Ranieri M, van de Berg R, Stokroos R, Kingma H, et al. The vestibular implant: A probe in orbit around the human balance system. J Vestib Res. 2017;27(1):51–61. doi:.https://doi.org/10.3233/VES-170604
  57. Perez Fornos A, Guinand N, van de Berg R, Stokroos R, Micera S, Kingma H, et al. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis. Front Neurol. 2014;5:66. doi:.https://doi.org/10.3389/fneur.2014.00066
  58. Guinand N, Van de Berg R, Cavuscens S, Stokroos R, Ranieri M, Pelizzone M, et al. Restoring Visual Acuity in Dynamic Conditions with a Vestibular Implant. Front Neurosci. 2016;10:577. doi:.https://doi.org/10.3389/fnins.2016.00577
  59. Dai C, Fridman GY, Della Santina CC. Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys. Hear Res. 2011;277(1-2):204–10. doi:.https://doi.org/10.1016/j.heares.2010.12.021
  60. Dai C, Fridman GY, Chiang B, Davidovics NS, Melvin TA, Cullen KE, et al. Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis. Exp Brain Res. 2011;210(3-4):595–606. doi:.https://doi.org/10.1007/s00221-011-2591-5
  61. Dai C, Fridman GY, Chiang B, Rahman MA, Ahn JH, Davidovics NS, et al. Directional plasticity rapidly improves 3D vestibulo-ocular reflex alignment in monkeys using a multichannel vestibular prosthesis. J Assoc Res Otolaryngol. 2013;14(6):863–77. doi:.https://doi.org/10.1007/s10162-013-0413-0
  62. Dai C, Fridman GY, Davidovics NS, Chiang B, Ahn JH, Della Santina CC. Restoration of 3D vestibular sensation in rhesus monkeys using a multichannel vestibular prosthesis. Hear Res. 2011;281(1-2):74–83. doi:.https://doi.org/10.1016/j.heares.2011.08.008
  63. Fridman GY, Davidovics NS, Dai C, Migliaccio AA, Della Santina CC. Vestibulo-ocular reflex responses to a multichannel vestibular prosthesis incorporating a 3D coordinate transformation for correction of misalignment. J Assoc Res Otolaryngol. 2010;11(3):367–81. doi:.https://doi.org/10.1007/s10162-010-0208-5
  64. Rubinstein JT, Bierer S, Kaneko C, Ling L, Nie K, Oxford T, et al. Implantation of the semicircular canals with preservation of hearing and rotational sensitivity: a vestibular neurostimulator suitable for clinical research. Otol Neurotol. 2012;33(5):789–96. doi:.https://doi.org/10.1097/MAO.0b013e318254ec24
  65. Golub JS, Ling L, Nie K, Nowack A, Shepherd SJ, Bierer SM, et al. Prosthetic implantation of the human vestibular system. Otol Neurotol. 2014;35(1):136–47. doi:.https://doi.org/10.1097/MAO.0000000000000003
  66. Phillips JO, Ling L, Nie K, Jameyson E, Phillips CM, Nowack AL, et al. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects. J Neurophysiol. 2015;113(10):3866–92. doi:.https://doi.org/10.1152/jn.00171.2013
  67. Phillips C, Ling L, Oxford T, Nowack A, Nie K, Rubinstein JT, et al. Longitudinal performance of an implantable vestibular prosthesis. Hear Res. 2015;322:200–11.
  68. Phillips C, Defrancisci C, Ling L, Nie K, Nowack A, Phillips JO, et al. Postural responses to electrical stimulation of the vestibular end organs in human subjects. Exp Brain Res. 2013;229(2):181–95. doi:.https://doi.org/10.1007/s00221-013-3604-3
  69. Perez Fornos A. Minimum requirements for a retinal prosthesis to restore useful vision. Geneva, Switzerland: University of Geneva; 2006.
  70. Kasper A. Electrically evoked activity in the human auditory system. Geneva, Switzerland: Université de Genève; 1991.
  71. DiGiovanna J, Nguyen TAK, Guinand N, Pérez-Fornos A, Micera S. Neural network model of vestibular nuclei reaction to onset of vestibular prosthetic stimulation. Front Bioeng Biotechnol. 2016;4:34. doi:.https://doi.org/10.3389/fbioe.2016.00034
  72. Shannon RV. Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hear Res. 1983;12(1):1–16. doi:.https://doi.org/10.1016/0378-5955(83)90115-6
  73. de Balthasar C, Boëx C, Cosendai G, Valentini G, Sigrist A, Pelizzone M. Channel interactions with high-rate biphasic electrical stimulation in cochlear implant subjects. Hear Res. 2003;182(1-2):77–87. doi:.https://doi.org/10.1016/S0378-5955(03)00174-6
  74. Boëx C, de Balthasar C, Kós MI, Pelizzone M. Electrical field interactions in different cochlear implant systems. J Acoust Soc Am. 2003;114(4):2049–57. doi:.https://doi.org/10.1121/1.1610451
  75. Horsager A, Boynton GM, Greenberg RJ, Fine I. Temporal interactions during paired-electrode stimulation in two retinal prosthesis subjects. Invest Ophthalmol Vis Sci. 2011;52(1):549–57. doi:.https://doi.org/10.1167/iovs.10-5282
  76. Horsager A, Greenberg RJ, Fine I. Spatiotemporal interactions in retinal prosthesis subjects. Invest Ophthalmol Vis Sci. 2010;51(2):1223–33. doi:.https://doi.org/10.1167/iovs.09-3746
  77. Davidovics NS, Fridman GY, Della Santina CC. Co-modulation of stimulus rate and current from elevated baselines expands head motion encoding range of the vestibular prosthesis. Exp Brain Res. 2012;218(3):389–400. doi:.https://doi.org/10.1007/s00221-012-3025-8
  78. Davidovics NS, Rahman MA, Dai C, Ahn J, Fridman GY, Della Santina CC. Multichannel vestibular prosthesis employing modulation of pulse rate and current with alignment precompensation elicits improved VOR performance in monkeys. J Assoc Res Otolaryngol. 2013;14(2):233–48. doi:.https://doi.org/10.1007/s10162-013-0370-7
  79. Merfeld DM, Lewis RF. Replacing semicircular canal function with a vestibular implant. Curr Opin Otolaryngol Head Neck Surg. 2012;20(5):386–92. doi:.https://doi.org/10.1097/MOO.0b013e328357630f
  80. Guinand N, Boselie F, Guyot JP, Kingma H. Quality of life of patients with bilateral vestibulopathy. Ann Otol Rhinol Laryngol. 2012;121(7):471–7. doi:.https://doi.org/10.1177/000348941212100708
  81. Guinand N, Pijnenburg M, Janssen M, Kingma H. Visual acuity while walking and oscillopsia severity in healthy subjects and patients with unilateral and bilateral vestibular function loss. Arch Otolaryngol Head Neck Surg. 2012;138(3):301–6. doi:.https://doi.org/10.1001/archoto.2012.4
  82. Kos I. The electrical stimulation of the internal ear at the University Hospitals of Geneva. Geneva: University of Geneva; 2010.
  83. Sommerhalder J, Rappaz B, de Haller R, Fornos AP, Safran AB, Pelizzone M. Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Res. 2004;44(14):1693–706. doi:.https://doi.org/10.1016/j.visres.2004.01.017
  84. van de Berg R, Guinand N, Nguyen TA, Ranieri M, Cavuscens S, Guyot JP, et al. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front Syst Neurosci. 2015;8:255. doi:.https://doi.org/10.3389/fnsys.2014.00255
  85. Guinand N, Van de Berg R, Cavuscens S, Ranieri M, Schneider E, Lucieer F, et al. The Video Head Impulse Test to Assess the Efficacy of Vestibular Implants in Humans. Front Neurol. 2017;8(600):600. doi:.https://doi.org/10.3389/fneur.2017.00600
  86. Rabinowitz WM, Eddington DK, Delhorne LA, Cuneo PA. Relations among different measures of speech reception in subjects using a cochlear implant. J Acoust Soc Am. 1992;92(4):1869–81. doi:.https://doi.org/10.1121/1.405252
  87. da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al.; Argus II Study Group. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol. 2013;97(5):632–6. doi:.https://doi.org/10.1136/bjophthalmol-2012-301525
  88. de Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A, et al. Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci. 2008;49(6):2303–14. doi:.https://doi.org/10.1167/iovs.07-0696
  89. Pérez Fornos A, Sommerhalder J, da Cruz L, Sahel JA, Mohand-Said S, Hafezi F, et al. Temporal properties of visual perception on electrical stimulation of the retina. Invest Ophthalmol Vis Sci. 2012;53(6):2720–31. doi:.https://doi.org/10.1167/iovs.11-9344
  90. Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW, Wilson JH, et al. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci. 2007;48(7):3364–71. doi:.https://doi.org/10.1167/iovs.07-0032
  91. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res. 2003;22(5):607–55. doi:.https://doi.org/10.1016/S1350-9462(03)00039-9
  92. Strettoi E, Pignatelli V, Rossi C, Porciatti V, Falsini B. Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res. 2003;43(8):867–77. doi:.https://doi.org/10.1016/S0042-6989(02)00594-1
  93. Weitz AC, Nanduri D, Behrend MR, Gonzalez-Calle A, Greenberg RJ, Humayun MS, et al. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci Transl Med. 2015;7(318):318ra203. doi:.https://doi.org/10.1126/scitranslmed.aac4877
  94. Rubinstein JT. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. II. Passive myelinated axon. Biophys J. 1991;60(3):538–55. doi:.https://doi.org/10.1016/S0006-3495(91)82084-7
  95. Rubinstein JT, Spelman FA. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon. Biophys J. 1988;54(6):975–81. doi:.https://doi.org/10.1016/S0006-3495(88)83035-2
  96. Wilson BS. The cochlear implant and possibilities for narrowing the remaining gaps between prosthetic and normal hearing. World J Otorhinolaryngol Head Neck Surg. 2018;3(4):200–10. doi:.https://doi.org/10.1016/j.wjorl.2017.12.005
  97. Chernov M, Roe AW. Infrared neural stimulation: a new stimulation tool for central nervous system applications. Neurophotonics. 2014;1(1):011011. doi:.https://doi.org/10.1117/1.NPh.1.1.011011
  98. Richardson RT, Thompson AC, Wise AK, Needham K. Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss. Expert Opin Biol Ther. 2017;17(2):213–23. doi:.https://doi.org/10.1080/14712598.2017.1271870
  99. Wang J, Tian L, Lu J, Xia M, Wei Y. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser. Lasers Med Sci. 2017;32(2):389–96. doi:.https://doi.org/10.1007/s10103-016-2129-y
  100. Matic AI, Robinson AM, Young HK, Badofsky B, Rajguru SM, Stock S, et al. Behavioral and electrophysiological responses evoked by chronic infrared neural stimulation of the cochlea. PLoS One. 2013;8(3):e58189. doi:.https://doi.org/10.1371/journal.pone.0058189
  101. Guo W, Hight AE, Chen JX, Klapoetke NC, Hancock KE, Shinn-Cunningham BG, et al. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway. Sci Rep. 2015;5(1):10319. doi:.https://doi.org/10.1038/srep10319
  102. Yue L, Weiland JD, Roska B, Humayun MS. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog Retin Eye Res. 2016;53:21–47. doi:.https://doi.org/10.1016/j.preteyeres.2016.05.002
  103. Verma RU, Guex AA, Hancock KE, Durakovic N, McKay CM, Slama MC, et al. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hear Res. 2014;310:69–75. doi:.https://doi.org/10.1016/j.heares.2014.01.008
  104. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8(9):1263–8. doi:.https://doi.org/10.1038/nn1525
  105. Senova S, Scisniak I, Chiang CC, Doignon I, Palfi S, Chaillet A, et al. Experimental assessment of the safety and potential efficacy of high irradiance photostimulation of brain tissues. Sci Rep. 2017;7(1):43997. doi:.https://doi.org/10.1038/srep43997
  106. Palanker DV, Huie P, Vankov AB, Freyvert Y, Fishman H, Marmor MF, et al., eds. Attracting retinal cells to electrodes for high-resolution stimulation. 2004.
  107. Pinyon JL, Tadros SF, Froud KE, Y Wong AC, Tompson IT, Crawford EN, et al. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med. 2014;6(233):233ra54. doi:.https://doi.org/10.1126/scitranslmed.3008177
  108. Senn P, Roccio M, Hahnewald S, Frick C, Kwiatkowska M, Ishikawa M, et al. NANOCI-Nanotechnology Based Cochlear Implant With Gapless Interface to Auditory Neurons. Otol Neurotol. 2017;38(8):e224–31. doi:.https://doi.org/10.1097/MAO.0000000000001439
  109. Landry TG, Fallon JB, Wise AK, Shepherd RK. Chronic neurotrophin delivery promotes ectopic neurite growth from the spiral ganglion of deafened cochleae without compromising the spatial selectivity of cochlear implants. J Comp Neurol. 2013;521(12):2818–32. doi:.https://doi.org/10.1002/cne.23318
  110. Yang LZ, Shi B, Li H, Zhang W, Liu Y, Wang H, et al. Electrical stimulation reduces smokers’ craving by modulating the coupling between dorsal lateral prefrontal cortex and parahippocampal gyrus. Soc Cogn Affect Neurosci. 2017;12(8):1296–302. doi:.https://doi.org/10.1093/scan/nsx055
  111. Jiménez F, Nicolini H, Lozano AM, Piedimonte F, Salín R, Velasco F. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. World Neurosurg. 2013;80(3-4):30.e17–25. doi:.https://doi.org/10.1016/j.wneu.2012.07.010
  112. Vanderveken OM, Beyers J, Op de Beeck S, Dieltjens M, Willemen M, Verbraecken JA, et al. Development of a Clinical Pathway and Technical Aspects of Upper Airway Stimulation Therapy for Obstructive Sleep Apnea. Front Neurosci. 2017;11:523. doi:.https://doi.org/10.3389/fnins.2017.00523
  113. Perez Fornos A. Sensory neuroprostheses: from physiology to clinical application. Université de Genève. Thèse de privat-docent, 2017. https://archive-ouverte.unige.ch/unige:102019