Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 1314 (2019)

High-throughput sequencing in clinical oncology: from past to present

Cite this as:
Swiss Med Wkly. 2019;149:w20057


The war on cancer remains a major challenge. One of the obstacles to additional progress is the complexity of the mechanisms underlying the disease. Cutting-edge technologies and computing tools have led to whole genome sequencing and an integrated and inclusive omic approach to cancers, from accurate molecular signatures of tumours to impressive progress in the field of next-generation sequencing (NGS). Genomic data may foster strategies for new drug development in addition to a better understanding of cancer genesis, opening a new era in oncological clinical practice. This review discusses the development of genomics approaches in cancer research and the potential of genomics for precision medicine, as well as clinical implications and remaining challenges.


  1. Bray F, Soerjomataram I. The Changing Global Burden of Cancer: Transitions in Human Development and Implications for Cancer Prevention and Control, The International Bank for Reconstruction and Development / The World Bank, 2015. doi:
  2. Sporn MB. The war on cancer. Lancet. 1996;347(9012):1377–81. doi:.
  3. Garland J. Unravelling the complexity of signalling networks in cancer: A review of the increasing role for computational modelling. Crit Rev Oncol Hematol. 2017;117:73–113. doi:.
  4. Azizi E, Clouthier SG, Wicha MS. The Promise of Single Cell Omics for Onco-therapy. J Mol Genet Med. 2014;8(03). doi:.
  5. Epstein RJ, Lin FP. Cancer and the omics revolution. Aust Fam Physician. 2017;46(4):189–93.
  6. Hinkson IV, Davidsen TM, Klemm JD, Kerlavage AR, Kibbe WA. A Comprehensive Infrastructure for Big Data in Cancer Research: Accelerating Cancer Research and Precision Medicine. Front Cell Dev Biol. 2017;5:83. doi:.
  7. Vucic EA, Thu KL, Robison K, Rybaczyk LA, Chari R, Alvarez CE, et al. Translating cancer ‘omics’ to improved outcomes. Genome Res. 2012;22(2):188–95. doi:.
  8. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a Shared Vision for Cancer Genomic Data. N Engl J Med. 2016;375(12):1109–12. doi:.
  9. Griffith OL, Gray JW. 'Omic approaches to preventing or managing metastatic breast cancer. Breast Cancer Res. 2011;13(6):230. doi:.
  10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:.
  11. Coleman WB. Next-Generation Breast Cancer Omics. Am J Pathol. 2017;187(10):2130–2. doi:.
  12. Wood SL, Westbrook JA, Brown JE. Omic-profiling in breast cancer metastasis to bone: implications for mechanisms, biomarkers and treatment. Cancer Treat Rev. 2014;40(1):139–52. doi:.
  13. Yu K-H, Snyder M. Omics Profiling in Precision Oncology. Mol Cell Proteomics. 2016;15(8):2525–36. doi:.
  14. Gonzalez-Angulo AM, Hennessy BTJ, Mills GB. Future of personalized medicine in oncology: a systems biology approach. J Clin Oncol. 2010;28(16):2777–83. doi:.
  15. Kotelnikova EA, Pyatnitskiy M, Paleeva A, Kremenetskaya O, Vinogradov D. Practical aspects of NGS-based pathways analysis for personalized cancer science and medicine. Oncotarget. 2016;7(32):52493–516. doi:.
  16. Home - The Cancer Genome Atlas - Cancer Genome - TCGA. (n.d.). (accessed February 14, 2018).
  17. Giordano TJ. The cancer genome atlas research network: a sight to behold. Endocr Pathol. 2014;25(4):362–5. doi:.
  18. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28(10):1045–8. doi:.
  19. Vucic EA, Thu KL, Robison K, Rybaczyk LA, Chari R, Alvarez CE, et al. Translating cancer ‘omics’ to improved outcomes. Genome Res. 2012;22(2):188–95. doi:.
  20. Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, et al. International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data. Database (Oxford). 2011;2011(0):bar026–026. doi:.
  21. Buescher JM, Driggers EM. Integration of omics: more than the sum of its parts. Cancer Metab. 2016;4(1):4. doi:.
  22. Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev. 2006;16(6):545–52. doi:.
  23. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010;16(5):991–1006. doi:.
  24. Bahassi M, Stambrook PJ. Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis. 2014;29(5):303–10. doi:.
  25. Ulahannan D, Kovac MB, Mulholland PJ, Cazier J-B, Tomlinson I. Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. Br J Cancer. 2013;109(4):827–35. doi:.
  26. Chakravarthi BVSK, Nepal S, Varambally S. Genomic and Epigenomic Alterations in Cancer. Am J Pathol. 2016;186(7):1724–35. doi:.
  27. Lee H, Lee K-W, Lee T, Park D, Chung J, Lee C, et al. Performance evaluation method for read mapping tool in clinical panel sequencing. Genes Genomics. 2018;40(2):189–97. doi:.
  28. Escalona M, Rocha S, Posada D. A comparison of tools for the simulation of genomic next-generation sequencing data. Nat Rev Genet. 2016;17(8):459–69. doi:. Correction published in: Nat Rev Genet. 2018;19:733.
  29. Daber R, Sukhadia S, Morrissette JJD. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer Genet. 2013;206(12):441–8. doi:.
  30. Molecular Oncology Tumor Boards | ASCO University, (n.d.). (accessed February 21, 2018).
  31. Harada S, Arend R, Dai Q, Levesque JA, Winokur TS, Guo R, et al. Implementation and utilization of the molecular tumor board to guide precision medicine. Oncotarget. 2017;8(34):57845–54. doi:.
  32. Chen K, Meric-Bernstam F, Zhao H, Zhang Q, Ezzeddine N, Tang LY, et al. Clinical actionability enhanced through deep targeted sequencing of solid tumors. Clin Chem. 2015;61(3):544–53. doi:.
  33. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al.; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. doi:.. Erratum in: Cell. 2014;157(3):753. doi:
  34. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al.; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. doi:.
  35. Sahm F, Schrimpf D, Jones DTW, Meyer J, Kratz A, Reuss D, et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 2016;131(6):903–10. doi:.
  36. Hallberg B, Palmer RH. Crizotinib--latest champion in the cancer wars? N Engl J Med. 2010;363(18):1760–2. doi:.
  37. Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol. 2014;11(8):473–81. doi:.
  38. Reiman A, Kikuchi H, Scocchia D, Smith P, Tsang YW, Snead D, et al. Validation of an NGS mutation detection panel for melanoma. BMC Cancer. 2017;17(1):150. doi:.
  39. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat J-P, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63. doi:.
  40. Malapelle U, Vigliar E, Sgariglia R, Bellevicine C, Colarossi L, Vitale D, et al. Ion Torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. J Clin Pathol. 2015;68(1):64–8. doi:.
  41. Tinhofer I, Budach V, Saki M, Konschak R, Niehr F, Jöhrens K, et al.; DKTK-ROG. Targeted next-generation sequencing of locally advanced squamous cell carcinomas of the head and neck reveals druggable targets for improving adjuvant chemoradiation. Eur J Cancer. 2016;57:78–86. doi:.
  42. Peng C, Ma W, Xia W, Zheng W. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer. Mol Med Rep. 2017;15(3):1087–94. doi:.
  43. Schwaederle M, Daniels GA, Piccioni DE, Fanta PT, Schwab RB, Shimabukuro KA, et al. On the Road to Precision Cancer Medicine: Analysis of Genomic Biomarker Actionability in 439 Patients. Mol Cancer Ther. 2015;14(6):1488–94. doi:.
  44. Wong SQ, Fellowes A, Doig K, Ellul J, Bosma TJ, Irwin D, et al. Assessing the clinical value of targeted massively parallel sequencing in a longitudinal, prospective population-based study of cancer patients. Br J Cancer. 2015;112(8):1411–20. doi:.
  45. Uzilov AV, Ding W, Fink MY, Antipin Y, Brohl AS, Davis C, et al. Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Med. 2016;8(1):62. doi:.
  46. Lane BR, Bissonnette J, Waldherr T, Ritz-Holland D, Chesla D, Cottingham SL, et al.; Spectrum Health Tumor Sequencing Advisory Board. Development of a Center for Personalized Cancer Care at a Regional Cancer Center: Feasibility Trial of an Institutional Tumor Sequencing Advisory Board. J Mol Diagn. 2015;17(6):695–704. doi:.
  47. Boland GM, Piha-Paul SA, Subbiah V, Routbort M, Herbrich SM, Baggerly K, et al. Clinical next generation sequencing to identify actionable aberrations in a phase I program. Oncotarget. 2015;6(24):20099–110. doi:.
  48. Tran B, Brown AMK, Bedard PL, Winquist E, Goss GD, Hotte SJ, et al. Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial. Int J Cancer. 2013;132(7):1547–55. doi:.
  49. Kim ST, Lee J, Hong M, Park K, Park JO, Ahn T, et al. The NEXT-1 (Next generation pErsonalized tX with mulTi-omics and preclinical model) trial: prospective molecular screening trial of metastatic solid cancer patients, a feasibility analysis. Oncotarget. 2015;6(32):33358–68. doi:.
  50. Lih C-J, Harrington RD, Sims DJ, Harper KN, Bouk CH, Datta V, et al. Analytical Validation of the Next-Generation Sequencing Assay for a Nationwide Signal-Finding Clinical Trial. J Mol Diagn. 2017;19(2):313–27. doi:.
  51. Lih C-J, Sims DJ, Harrington RD, Polley EC, Zhao Y, Mehaffey MG, et al. Analytical Validation and Application of a Targeted Next-Generation Sequencing Mutation-Detection Assay for Use in Treatment Assignment in the NCI-MPACT Trial. J Mol Diagn. 2016;18(1):51–67. doi:.
  52. Foekens JA, Atkins D, Zhang Y, Sweep FCGJ, Harbeck N, Paradiso A, et al. Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol. 2006;24(11):1665–71. doi:.
  53. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365(9460):671–9. doi:.
  54. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6. doi:.
  55. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26. doi:.
  56. Griffith OL, Gray JW. 'Omic approaches to preventing or managing metastatic breast cancer. Breast Cancer Res. 2011;13(6):230. doi:.
  57. Schwaederle M, Parker BA, Schwab RB, Fanta PT, Boles SG, Daniels GA, et al. Molecular tumor board: the University of California-San Diego Moores Cancer Center experience. Oncologist. 2014;19(6):631–6. doi:.
  58. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C. Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med. 2012;4(127):127ps10. doi:.
  59. Basho RK, Eterovic AK. Meric-Bernstam F. Clinical Applications and Limitations of Next-Generation Sequencing. Am J Hematol Oncol. 2015;11. Available at:
  60. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34. doi:.
  61. Yadav NK, Shukla P, Omer A, Pareek S, Srivastava AK, Bansode FW, et al. Erratum to “Next Generation Sequencing: Potential and Application in Drug Discovery”. Sci World J. 2014;2014:1. doi:.
  62. Kulski JK. Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications, in: Next Gener. Seq. - Adv. Appl. Challenges, InTech, 2016. doi:
  63. Wheatley D. Cancer research: quo vadis-to war? Ecancermedicalscience. 2014;8:ed45. doi:.
  64. Horak P, Fröhling S, Glimm H. Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open. 2016;1(5):e000094. doi:.

Most read articles by the same author(s)