Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 149 No. 1314 (2019)

The rate of mother-to-child transmission of antiretroviral drug-resistant HIV strains is low in the Swiss Mother and Child HIV Cohort Study

  • Francesca Compagno
  • Klaudia Naegele
  • Christian R. Kahlert
  • Irene Hösli
  • Karoline Aebi-Popp
  • Begona Martinez de Tejada
  • Paolo Paioni
  • Sabine Yerly
  • Jürg Böni
  • Manuel Battegay
  • Christoph Rudin
  • Hans H. Hirsch
  • the Swiss HIV Cohort Study
DOI
https://doi.org/10.4414/smw.2019.20059
Cite this as:
Swiss Med Wkly. 2019;149:w20059
Published
04.04.2019

Summary

AIMS OF THE STUDY

Combination antiretroviral therapy (cART) has reduced mother-to-child transmissions (MTCT) and improved the prognosis of HIV-infected newborns. However, drug resistance mutations (DRM) in HIV-infected children, either transmitted by MTCT (HIV-tDRM) or selected by suboptimal adherence and drug levels (HIV-sDRM), remain a concern. We sought to determine the rate of HIV-tDRM and HIV-sDRM in MTCT pairs in Switzerland.

METHODS

We performed a retrospective analysis of prospectively collected clinical data and available stored samples from MTCT pairs participating in the Swiss Mother-Child HIV (MoCHIV) cohort.

RESULTS

We identified 22 HIV-infected mother-child pairs with delivery between 1989 and 2009 who had 15 years of follow-up (33% white ethnicity). Twenty-one women (96%) were treatment-naïve before pregnancy, 8 (36%) had an unknown HIV status and delivered vaginally, 2 were diagnosed but not treated, and 11 (50%) received antiretrovirals during pregnancy or at delivery, of whom only 6 cases (27%) had cART. HIV subtypes were concordant in all mother-child pairs (subtype B 13/22 [59%]). Using stored plasma (n = 66) and mononuclear cell (n = 43) samples from the children, HIV-tDRM (M184V) was identified in 1 of 22 (4.5%) mothers (1/11 treated, 9%) and was followed by HIV-sDRM at 10 months of age. HIV-sDRM (M184V 23%; K103N 4.5%; D67N 13.6%) occurred in 16/22 (73%) after 4 years, half of whom were treatment naïve. HIV-sDRM were associated with a lower CD4 T-cell nadir (p <0.05) and tended to have higher viral loads and more frequent cART changes.

CONCLUSIONS

HIV-tDRM were low in this Swiss MoCHIV cohort, making them a minor yet preventable complication of prenatal HIV care, whereas HIV-sDRM are a significant challenge in paediatric HIV care.

References

  1. UNAIDS. The Gap Report 2014. Geneva: UNAIDS; 2014.
  2. AIDSInfo. Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States. http://aidsinfo.nih.gov/guidelines2015.
  3. WHO. Global plan towards the elimination of new HIV infections among children by 2015 and keeping their mothers alive. Geneva: World Health Organization; 2015.
  4. EACS EACS. EACS Guidelines Version 9.0 Version 9.0 ed. http://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html2017.
  5. IMPAACT. Network IMPAACT. IMPAACT Press Releases and other Research News. https://impaactnetwork.org/news_/index.html 2018.
  6. Bamford A, Turkova A, Lyall H, Foster C, Klein N, Bastiaans D, et al. Paediatric European Network for Treatment of AIDS (PENTA) guidelines for treatment of paediatric HIV-1 infection 2015: optimizing health in preparation for adult life. HIV Med. 2018;19(1):e1–42.
  7. WHO. Global Health Sector Response to HIV, 2000-2015: Focus on Innovations in Africa: Progress Report. Geneva: World Health Organization; 2015.
  8. Klein N, Palma P, Luzuriaga K, Pahwa S, Nastouli E, Gibb DM, et al. Early antiretroviral therapy in children perinatally infected with HIV: a unique opportunity to implement immunotherapeutic approaches to prolong viral remission. Lancet Infect Dis. 2015;15(9):1108–14. doi:.https://doi.org/10.1016/S1473-3099(15)00052-3
  9. Van Dyke RB, Patel K, Siberry GK, Burchett SK, Spector SA, Chernoff MC, et al.; Pediatric HIV/AIDS Cohort Study. Antiretroviral treatment of US children with perinatally acquired HIV infection: temporal changes in therapy between 1991 and 2009 and predictors of immunologic and virologic outcomes. J Acquir Immune Defic Syndr. 2011;57(2):165–73. doi:.https://doi.org/10.1097/QAI.0b013e318215c7b1
  10. Penazzato M, Prendergast A, Tierney J, Cotton M, Gibb D. Effectiveness of antiretroviral therapy in HIV-infected children under 2 years of age. Cochrane Database Syst Rev. 2012;7(7):CD004772. doi:.https://doi.org/10.1002/14651858.CD004772.pub3
  11. Berti E, Thorne C, Noguera-Julian A, Rojo P, Galli L, de Martino M, et al. The new face of the pediatric HIV epidemic in Western countries: demographic characteristics, morbidity and mortality of the pediatric HIV-infected population. Pediatr Infect Dis J. 2015;34(5, Suppl 1):S7–13. doi:.https://doi.org/10.1097/INF.0000000000000660
  12. Fitzgerald F, Penazzato M, Gibb D. Development of antiretroviral resistance in children with HIV in low- and middle-income countries. J Infect Dis. 2013;207(Suppl 2):S85–92. doi:.https://doi.org/10.1093/infdis/jit115
  13. Davies MA, Boulle A, Eley B, Moultrie H, Technau K, Rabie H, et al.; International epidemiologic Databases to Evaluate AIDS Southern Africa (IeDEA‐SA) Collaboration. Accuracy of immunological criteria for identifying virological failure in children on antiretroviral therapy - the IeDEA Southern Africa Collaboration. Trop Med Int Health. 2011;16(11):1367–71. doi:.https://doi.org/10.1111/j.1365-3156.2011.02854.x
  14. Castro H, Judd A, Gibb DM, Butler K, Lodwick RK, van Sighem A, et al., Pursuing Later Treatment Options II (PLATO II) project team for the Collaboration of Observational HIV Epidemiological Research Europe (COHERE). Risk of triple-class virological failure in children with HIV: a retrospective cohort study. Lancet. 2011;377(9777):1580–7. doi:.https://doi.org/10.1016/S0140-6736(11)60208-0
  15. Persaud D, Palumbo P, Ziemniak C, Chen J, Ray SC, Hughes M, et al.; Pediatric AIDS Clinical Trials Group P1030 Team. Early archiving and predominance of nonnucleoside reverse transcriptase inhibitor-resistant HIV-1 among recently infected infants born in the United States. J Infect Dis. 2007;195(10):1402–10. doi:.https://doi.org/10.1086/513871
  16. Schoeni-Affolter F, Ledergerber B, Rickenbach M, Rudin C, Günthard HF, Telenti A, et al.; Swiss HIV Cohort Study. Cohort profile: the Swiss HIV Cohort study. Int J Epidemiol. 2010;39(5):1179–89. doi:.https://doi.org/10.1093/ije/dyp321
  17. Bellecave P, Recordon-Pinson P, Fleury H. Evaluation of Automatic Analysis of Ultradeep Pyrosequencing Raw Data to Determine Percentages of HIV Resistance Mutations in Patients Followed-Up in Hospital. AIDS Res Hum Retroviruses. 2016;32(1):85–92. doi:.https://doi.org/10.1089/aid.2015.0201
  18. Mohamed S, Penaranda G, Gonzalez D, Camus C, Khiri H, Boulmé R, et al. Comparison of ultra-deep versus Sanger sequencing detection of minority mutations on the HIV-1 drug resistance interpretations after virological failure. AIDS. 2014;28(9):1315–24. doi:.https://doi.org/10.1097/QAD.0000000000000267
  19. Lautenschlager I, Jahnukainen T, Kardas P, Lohi J, Auvinen E, Mannonen L, et al. A case of primary JC polyomavirus infection-associated nephropathy. Am J Transplant. 2014;14(12):2887–92. doi:.https://doi.org/10.1111/ajt.12945
  20. Egger M, Hirschel B, Francioli P, Sudre P, Wirz M, Flepp M, et al. Impact of new antiretroviral combination therapies in HIV infected patients in Switzerland: prospective multicentre study. Swiss HIV Cohort Study. BMJ. 1997;315(7117):1194–9. doi:.https://doi.org/10.1136/bmj.315.7117.1194
  21. Rogo T, DeLong AK, Chan P, Kantor R. Antiretroviral treatment failure, drug resistance, and subtype diversity in the only pediatric HIV clinic in Rhode Island. Clin Infect Dis. 2015;60(9):1426–35. doi:.https://doi.org/10.1093/cid/civ058
  22. Vaz SN, Giovanetti M, Rego FF, de Oliveira T, Danaviah S, Gonçalves ML, et al. Molecular Characterization of the Human Immunodeficiency Virus Type 1 in Women and Their Vertically Infected Children. AIDS Res Hum Retroviruses. 2015;31(10):1046–51. doi:.https://doi.org/10.1089/aid.2015.0166
  23. Lel R, Ngaira J, Lihana R, Khamadi S. HIV-1 drug resistance mutations among infants born to HIV-positive mothers in Busia, Kenya. AIDS Res Hum Retroviruses. 2014;30(12):1236–8. doi:.https://doi.org/10.1089/aid.2014.0158
  24. Siegrist CA, Yerly S, Kaiser L, Wyler CA, Perrin L. Mother to child transmission of zidovudine-resistant HIV-1. Lancet. 1994;344(8939-8940):1771–2. doi:.https://doi.org/10.1016/S0140-6736(94)92911-4
  25. Rojas Sánchez P, Holguín A. Drug resistance in the HIV-1-infected paediatric population worldwide: a systematic review. J Antimicrob Chemother. 2014;69(8):2032–42. doi:.https://doi.org/10.1093/jac/dku104
  26. Loubser S, Balfe P, Sherman G, Hammer S, Kuhn L, Morris L. Decay of K103N mutants in cellular DNA and plasma RNA after single-dose nevirapine to reduce mother-to-child HIV transmission. AIDS. 2006;20(7):995–1002. doi:.https://doi.org/10.1097/01.aids.0000222071.60620.1d
  27. Flys TS, Donnell D, Mwatha A, Nakabiito C, Musoke P, Mmiro F, et al. Persistence of K103N-containing HIV-1 variants after single-dose nevirapine for prevention of HIV-1 mother-to-child transmission. J Infect Dis. 2007;195(5):711–5. doi:.https://doi.org/10.1086/511433
  28. Hirsch HH, Drechsler H, Holbro A, Hamy F, Sendi P, Petrovic K, et al. Genotypic and phenotypic resistance testing of HIV-1 in routine clinical care. Eur J Clin Microbiol Infect Dis. 2005;24(11):733–8. doi:.https://doi.org/10.1007/s10096-005-0044-4
  29. Camacho-Gonzalez AF, Kingbo MH, Boylan A, Eckard AR, Chahroudi A, Chakraborty R. Missed opportunities for prevention of mother-to-child transmission in the United States. AIDS. 2015;29(12):1511–5. doi:.https://doi.org/10.1097/QAD.0000000000000710
  30. Aebi-Popp K, Mulcahy F, Glass TR, Rudin C, Martinez de Tejada B, Bertisch B, et al.; European Collaborative Study in EuroCoord; Swiss Mother & Child HIV Cohort Study. Missed opportunities among HIV-positive women to control viral replication during pregnancy and to have a vaginal delivery. J Acquir Immune Defic Syndr. 2013;64(1):58–65. doi:.https://doi.org/10.1097/QAI.0b013e3182a334e3
  31. Graves MM, Roberts MC, Rapoff M, Boyer A. The efficacy of adherence interventions for chronically ill children: a meta-analytic review. J Pediatr Psychol. 2010;35(4):368–82. doi:.https://doi.org/10.1093/jpepsy/jsp072
  32. Hood KK, Peterson CM, Rohan JM, Drotar D. Association between adherence and glycemic control in pediatric type 1 diabetes: a meta-analysis. Pediatrics. 2009;124(6):e1171–9. doi:.https://doi.org/10.1542/peds.2009-0207
  33. Dobbels F, Ruppar T, De Geest S, Decorte A, Van Damme-Lombaerts R, Fine RN. Adherence to the immunosuppressive regimen in pediatric kidney transplant recipients: a systematic review. Pediatr Transplant. 2010;14(5):603–13. doi:.https://doi.org/10.1111/j.1399-3046.2010.01299.x

Most read articles by the same author(s)

<< < 1 2 3 4