Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 0708 (2019)

Risk stratification in coronary artery disease: a patient-tailored approach over the ischaemic cascade

  • Michael J. Zellweger
DOI
https://doi.org/10.4414/smw.2019.20014
Cite this as:
Swiss Med Wkly. 2019;149:w20014
Published
11.02.2019

Abstract

Patient tailored diagnosis and risk stratification in patients with suspected or known coronary artery disease (CAD) are pivotal. At present, cardiac imaging modalities provide the possibility to evaluate the whole ischaemic cascade noninvasively. In asymptomatic patients, the evaluation of the calcium score may be beneficial and also guide the individual preventive strategy. Furthermore, the calcium score provides complimentary information to the information as assessed by functional testing. Coronary computed tomographic angiography (CCTA) is an excellent tool to exclude CAD, having a negative predictive value of 97–99%. Comparably, a normal functional cardiac imaging test (e.g., positron emission tomography (PET); myocardial perfusion SPECT (MPS); cardiac magnetic resonance (CMR); and stress echocardiography) is consistent with a good prognosis and in general an annual cardiac death rate <1%. If a patient has an abnormal imaging test, it is important for risk stratification to evaluate the severity and extent of the abnormality (e.g., the extent and severity of the perfusion defect, or of the wall motion abnormality, which is consistent with the extent of myocardial scar and ischaemia). The patient’s symptoms and the extent of ischaemia, scar and decrease of ejection fraction will guide the strategy, either to an optimal medical therapy or to a further invasive evaluation. If more than 10% of the myocardium are ischaemic, it is very likely that patients will benefit from revascularisation.

The current guidelines leave a lot of room as to which test to choose for noninvasive CAD evaluation and risk stratification. The selection of the particular modality is, in part, led by the pretest probability of CAD and local availability, expertise and preference. However, whenever possible, an imaging-based test rather than a “stand-alone” stress ECG should be used. Cardiac imaging has higher sensitivities and specificities to diagnose or exclude CAD compared with stress testing alone. Using a hybrid approach, integrating complimentary information to that given by functional testing (e.g., PET/CT) provides the highest noninvasive diagnostic and prognostic accuracies in CAD evaluation available so far.

References

  1. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979;300(24):1350–8. doi:.https://doi.org/10.1056/NEJM197906143002402
  2. Genders TS, Steyerberg EW, Hunink MG, Nieman K, Galema TW, Mollet NR, et al. Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ. 2012;344(jun12 1):e3485. doi:.https://doi.org/10.1136/bmj.e3485
  3. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al., Document Reviewers. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. doi:.https://doi.org/10.1093/eurheartj/eht296
  4. Zellweger MJ, Tsirkin A, Vasilchenko V, Failer M, Dressel A, Kleber ME, et al. A new non-invasive diagnostic tool in coronary artery disease: artificial intelligence as an essential element of predictive, preventive, and personalized medicine. EPMA J. 2018;9(3):235–47. doi:.https://doi.org/10.1007/s13167-018-0142-x
  5. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Jr, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92(5):1355–74. doi:.https://doi.org/10.1161/01.CIR.92.5.1355
  6. Gräni C, Vontobel J, Benz DC, Bacanovic S, Giannopoulos AA, Messerli M, et al. Ultra-low-dose coronary artery calcium scoring using novel scoring thresholds for low tube voltage protocols-a pilot study. Eur Heart J Cardiovasc Imaging. 2018;19(12):1362–71. doi:.https://doi.org/10.1093/ehjci/jey019
  7. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32. doi:.https://doi.org/10.1016/0735-1097(90)90282-T
  8. Shaw LJ, Raggi P, Berman DS, Callister TQ. Coronary artery calcium as a measure of biologic age. Atherosclerosis. 2006;188(1):112–9. doi:.https://doi.org/10.1016/j.atherosclerosis.2005.10.010
  9. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788–95. doi:.https://doi.org/10.1001/jama.2012.9624
  10. Shaw LJ, Giambrone AE, Blaha MJ, Knapper JT, Berman DS, Bellam N, et al. Long-Term Prognosis After Coronary Artery Calcification Testing in Asymptomatic Patients: A Cohort Study. Ann Intern Med. 2015;163(1):14–21. doi:.https://doi.org/10.7326/M14-0612
  11. Iwasaki K, Matsumoto T, Aono H, Furukawa H, Samukawa M. Prevalence of non-calcified coronary plaque on 64-slice computed tomography in asymptomatic patients with zero and low coronary artery calcium. Can J Cardiol. 2010;26(7):377–80. doi:.https://doi.org/10.1016/S0828-282X(10)70419-0
  12. Mittal TK, Pottle A, Nicol E, Barbir M, Ariff B, Mirsadraee S, et al. Prevalence of obstructive coronary artery disease and prognosis in patients with stable symptoms and a zero-coronary calcium score. Eur Heart J Cardiovasc Imaging. 2017;18(8):922–9. doi:.https://doi.org/10.1093/ehjci/jex037
  13. Yerramasu A, Lahiri A, Venuraju S, Dumo A, Lipkin D, Underwood SR, et al. Diagnostic role of coronary calcium scoring in the rapid access chest pain clinic: prospective evaluation of NICE guidance. Eur Heart J Cardiovasc Imaging. 2014;15(8):886–92. doi:.https://doi.org/10.1093/ehjci/jeu011
  14. Hoff JA, Chomka EV, Krainik AJ, Daviglus M, Rich S, Kondos GT. Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol. 2001;87(12):1335–9. doi:.https://doi.org/10.1016/S0002-9149(01)01548-X
  15. Engbers EM, Timmer JR, Ottervanger JP, Mouden M, Knollema S, Jager PL. Prognostic Value of Coronary Artery Calcium Scoring in Addition to Single-Photon Emission Computed Tomographic Myocardial Perfusion Imaging in Symptomatic Patients. Circ Cardiovasc Imaging. 2016;9(5):e003966. doi:.https://doi.org/10.1161/CIRCIMAGING.115.003966
  16. Chang SM, Nabi F, Xu J, Peterson LE, Achari A, Pratt CM, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol. 2009;54(20):1872–82. doi:.https://doi.org/10.1016/j.jacc.2009.05.071
  17. He ZX, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation. 2000;101(3):244–51. doi:.https://doi.org/10.1161/01.CIR.101.3.244
  18. Mouden M, Ottervanger JP, Timmer JR, Reiffers S, Oostdijk AH, Knollema S, et al. Myocardial perfusion imaging in stable symptomatic patients with extensive coronary atherosclerosis. Eur J Nucl Med Mol Imaging. 2014;41(1):136–43. doi:.https://doi.org/10.1007/s00259-013-2539-z
  19. Michos ED, Blaha MJ, Blumenthal RS. Use of the Coronary Artery Calcium Score in Discussion of Initiation of Statin Therapy in Primary Prevention. Mayo Clin Proc. 2017;92(12):1831–41. doi:.https://doi.org/10.1016/j.mayocp.2017.10.001
  20. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95. doi:.https://doi.org/10.1056/NEJMoa0907272
  21. Buechel RR, Kaufmann BA, Tobler D, Wild D, Zellweger MJ. Non-invasive nuclear myocardial perfusion imaging improves the diagnostic yield of invasive coronary angiography. Eur Heart J Cardiovasc Imaging. 2015;16(8):842–7. doi:.https://doi.org/10.1093/ehjci/jev095
  22. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al.; PROMISE Investigators. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372(14):1291–300. doi:.https://doi.org/10.1056/NEJMoa1415516
  23. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32. doi:.https://doi.org/10.1016/j.jacc.2008.07.031
  24. de Jong MC, Genders TS, van Geuns RJ, Moelker A, Hunink MG. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2012;22(9):1881–95. doi:.https://doi.org/10.1007/s00330-012-2434-1
  25. Diamond GA, Kaul S. Gone fishing!: on the “real-world” accuracy of computed tomographic coronary angiography: Comment on the “Ontario multidetector computed tomographic coronary angiography study”. Arch Intern Med. 2011;171(11):1029–31. doi:.https://doi.org/10.1001/archinternmed.2011.75
  26. Froelicher VF, Lehmann KG, Thomas R, Goldman S, Morrison D, Edson R, et al. The electrocardiographic exercise test in a population with reduced workup bias: diagnostic performance, computerized interpretation, and multivariable prediction. Veterans Affairs Cooperative Study in Health Services #016 (QUEXTA) Study Group. Quantitative Exercise Testing and Angiography. Ann Intern Med. 1998;128(12 Pt 1):965–74. doi:.https://doi.org/10.7326/0003-4819-128-12_Part_1-199806150-00001
  27. Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS, et al.; American College of Cardiology; American Heart Association Task Force on Practice Guidelines. Committee on the Management of Patients With Chronic Stable Angina. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation. 2003;107(1):149–58. doi:.https://doi.org/10.1161/01.CIR.0000047041.66447.29
  28. Hamon M, Fau G, Née G, Ehtisham J, Morello R, Hamon M. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson. 2010;12(1):29. doi:.https://doi.org/10.1186/1532-429X-12-29
  29. Heijenbrok-Kal MH, Fleischmann KE, Hunink MG. Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am Heart J. 2007;154(3):415–23. doi:.https://doi.org/10.1016/j.ahj.2007.04.061
  30. Higgins JP, Williams G, Nagel JS, Higgins JA. Left bundle-branch block artifact on single photon emission computed tomography with technetium Tc 99m (Tc-99m) agents: mechanisms and a method to decrease false-positive interpretations. Am Heart J. 2006;152(4):619–26. doi:.https://doi.org/10.1016/j.ahj.2006.06.009
  31. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59(19):1719–28. doi:.https://doi.org/10.1016/j.jacc.2011.12.040
  32. Mark DB, Hlatky MA, Harrell FE, Jr, Lee KL, Califf RM, Pryor DB. Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med. 1987;106(6):793–800. doi:.https://doi.org/10.7326/0003-4819-106-6-793
  33. Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: A systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(18):1828–37. doi:.https://doi.org/10.1016/j.jacc.2012.07.038
  34. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36. doi:.https://doi.org/10.1056/NEJMoa0806576
  35. Morise AP, Diamond GA. Comparison of the sensitivity and specificity of exercise electrocardiography in biased and unbiased populations of men and women. Am Heart J. 1995;130(4):741–7. doi:.https://doi.org/10.1016/0002-8703(95)90072-1
  36. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2007;50(14):1343–53. doi:.https://doi.org/10.1016/j.jacc.2007.06.030
  37. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al.; MR-IMPACT Investigators. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J. 2013;34(10):775–81. doi:.https://doi.org/10.1093/eurheartj/ehs022
  38. Marwan M, Hausleiter J, Abbara S, Hoffmann U, Becker C, Ovrehus K, et al. Multicenter Evaluation Of Coronary Dual-Source CT angiography in patients with intermediate Risk of Coronary Artery Stenoses (MEDIC): study design and rationale. J Cardiovasc Comput Tomogr. 2014;8(3):183–8. doi:.https://doi.org/10.1016/j.jcct.2014.04.006
  39. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135–44. doi:.https://doi.org/10.1016/j.jacc.2008.08.058
  40. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57(10):1237–47. doi:.https://doi.org/10.1016/j.jacc.2010.10.011
  41. Assessing and diagnosing suspected stable angina (NICE pathways). http://pathwaysniceorguk/pathways/chest-pain 2018.
  42. Abbara S, Arbab-Zadeh A, Callister TQ, Desai MY, Mamuya W, Thomson L, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3(3):190–204. doi:.https://doi.org/10.1016/j.jcct.2009.03.004
  43. Schmermund A, Marwan M, Hausleiter J, Barth S, Bruder O, Kerber S, et al. Declining radiation dose of coronary computed tomography angiography: German cardiac CT registry experience 2009-2014. Clin Res Cardiol. 2017;106(11):905–12. doi:.https://doi.org/10.1007/s00392-017-1136-8
  44. Bourque JM, Beller GA. Stress myocardial perfusion imaging for assessing prognosis: an update. JACC Cardiovasc Imaging. 2011;4(12):1305–19. doi:.https://doi.org/10.1016/j.jcmg.2011.10.003
  45. Hachamovitch R, Hayes S, Friedman JD, Cohen I, Shaw LJ, Germano G, et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol. 2003;41(8):1329–40. doi:.https://doi.org/10.1016/S0735-1097(03)00125-6
  46. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45. doi:.https://doi.org/10.1056/NEJMoa072100
  47. Shaw LJ, Hendel R, Borges-Neto S, Lauer MS, Alazraki N, Burnette J, et al.; Myoview Multicenter Registry. Prognostic value of normal exercise and adenosine (99m)Tc-tetrofosmin SPECT imaging: results from the multicenter registry of 4,728 patients. J Nucl Med. 2003;44(2):134–9.
  48. Lipinski MJ, McVey CM, Berger JS, Kramer CM, Salerno M. Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2013;62(9):826–38. doi:.https://doi.org/10.1016/j.jacc.2013.03.080
  49. Berman DS, Kiat H, Friedman JD, Wang FP, van Train K, Matzer L, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993;22(5):1455–64. doi:.https://doi.org/10.1016/0735-1097(93)90557-H
  50. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al.; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42. doi:.https://doi.org/10.1161/hc0402.102975
  51. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93(5):905–14. doi:.https://doi.org/10.1161/01.CIR.93.5.905
  52. Zellweger MJ, Hachamovitch R, Kang X, Hayes SW, Friedman JD, Germano G, et al. Threshold, incidence, and predictors of prognostically high-risk silent ischemia in asymptomatic patients without prior diagnosis of coronary artery disease. J Nucl Cardiol. 2009;16(2):193–200. doi:.https://doi.org/10.1007/s12350-008-9016-2
  53. Amanullah AM, Kiat H, Hachamovitch R, Cabico JA, Friedman JD, Berman DS. Impact of myocardial perfusion single-photon emission computed tomography on referral to catheterization of the very elderly. Is there evidence of gender-related referral bias? J Am Coll Cardiol. 1996;28(3):680–6. doi:.https://doi.org/10.1016/0735-1097(96)00200-8
  54. Amanullah AM, Kiat H, Friedman JD, Berman DS. Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: diagnostic efficacy in detection of coronary artery disease. J Am Coll Cardiol. 1996;27(4):803–9. doi:.https://doi.org/10.1016/0735-1097(95)00550-1
  55. Chow BJ, Dorbala S, Di Carli MF, Merhige ME, Williams BA, Veledar E, et al. Prognostic value of PET myocardial perfusion imaging in obese patients. JACC Cardiovasc Imaging. 2014;7(3):278–87. doi:.https://doi.org/10.1016/j.jcmg.2013.12.008
  56. Zellweger MJ, Lewin HC, Lai S, Dubois EA, Friedman JD, Germano G, et al. When to stress patients after coronary artery bypass surgery? Risk stratification in patients early and late post-CABG using stress myocardial perfusion SPECT: implications of appropriate clinical strategies. J Am Coll Cardiol. 2001;37(1):144–52. doi:.https://doi.org/10.1016/S0735-1097(00)01104-9
  57. Zellweger MJ, Fahrni G, Ritter M, Jeger RV, Wild D, Buser P, et al.; BASKET Investigators. Prognostic value of “routine” cardiac stress imaging 5 years after percutaneous coronary intervention: the prospective long-term observational BASKET (Basel Stent Kosteneffektivitäts Trial) LATE IMAGING study. JACC Cardiovasc Interv. 2014;7(6):615–21. doi:.https://doi.org/10.1016/j.jcin.2014.01.161
  58. Wackers FJ, Young LH, Inzucchi SE, Chyun DA, Davey JA, Barrett EJ, et al.; Detection of Ischemia in Asymptomatic Diabetics Investigators. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27(8):1954–61. doi:.https://doi.org/10.2337/diacare.27.8.1954
  59. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, et al.; DIAD Investigators. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–55. doi:.https://doi.org/10.1001/jama.2009.476
  60. Zellweger MJ, Maraun M, Osterhues HH, Keller U, Müller-Brand J, Jeger R, et al. Progression to overt or silent CAD in asymptomatic patients with diabetes mellitus at high coronary risk: main findings of the prospective multicenter BARDOT trial with a pilot randomized treatment substudy. JACC Cardiovasc Imaging. 2014;7(10):1001–10. doi:.https://doi.org/10.1016/j.jcmg.2014.07.010
  61. Zellweger MJ, Haaf P, Maraun M, Osterhues HH, Keller U, Müller-Brand J, et al.; BARDOT Investigators. Predictors and prognostic impact of silent coronary artery disease in asymptomatic high-risk patients with diabetes mellitus. Int J Cardiol. 2017;244:37–42. doi:.https://doi.org/10.1016/j.ijcard.2017.05.069
  62. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26(15):1461–74. doi:.https://doi.org/10.1093/eurheartj/ehi258
  63. Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118(10):1011–20. doi:.https://doi.org/10.1161/CIRCULATIONAHA.107.727826
  64. Tweet MS, Arruda-Olson AM, Anavekar NS, Pellikka PA. Stress echocardiography: what is new and how does it compare with myocardial perfusion imaging and other modalities? Curr Cardiol Rep. 2015;17(6):43. doi:.https://doi.org/10.1007/s11886-015-0600-1
  65. Arumugam P, Tout D, Tonge C. Myocardial perfusion scintigraphy using rubidium-82 positron emission tomography. Br Med Bull. 2013;107(1):87–100. doi:.https://doi.org/10.1093/bmb/ldt026
  66. Dorbala S, Di Carli MF, Beanlands RS, Merhige ME, Williams BA, Veledar E, et al. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol. 2013;61(2):176–84. doi:.https://doi.org/10.1016/j.jacc.2012.09.043
  67. Benz DC, Gaemperli L, Gräni C, von Felten E, Giannopoulos AA, Messerli M, et al. Impact of cardiac hybrid imaging-guided patient management on clinical long-term outcome. Int J Cardiol. 2018;261:218–22. doi:.https://doi.org/10.1016/j.ijcard.2018.01.118
  68. Pazhenkottil AP, Benz DC, Gräni C, Madsen MA, Mikulicic F, von Felten E, et al. Hybrid SPECT Perfusion Imaging and Coronary CT Angiography: Long-term Prognostic Value for Cardiovascular Outcomes. Radiology. 2018;288(3):694–702. doi:.https://doi.org/10.1148/radiol.2018171303
  69. Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, et al.; Economics of Noninvasive Diagnosis (END) Multicenter Study Group. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. J Am Coll Cardiol. 1999;33(3):661–9. doi:.https://doi.org/10.1016/S0735-1097(98)00606-8
  70. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al.; COURAGE Trial Research Group. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16. doi:.https://doi.org/10.1056/NEJMoa070829
  71. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al.; COURAGE Investigators. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91. doi:.https://doi.org/10.1161/CIRCULATIONAHA.107.743963
  72. Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, et al., BARI 2D Study Group. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–15. doi:.https://doi.org/10.1056/NEJMoa0805796
  73. Shaw LJ, Cerqueira MD, Brooks MM, Althouse AD, Sansing VV, Beller GA, et al. Impact of left ventricular function and the extent of ischemia and scar by stress myocardial perfusion imaging on prognosis and therapeutic risk reduction in diabetic patients with coronary artery disease: results from the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. J Nucl Cardiol. 2012;19(4):658–69. doi:.https://doi.org/10.1007/s12350-012-9548-3
  74. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900–7. doi:.https://doi.org/10.1161/01.CIR.0000072790.23090.41

Most read articles by the same author(s)