Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 0304 (2019)

Development of a novel class of interleukin-2 immunotherapies for metastatic cancer

  • Onur Boyman
  • Natalia Arenas-Ramirez
DOI
https://doi.org/10.4414/smw.2019.14697
Cite this as:
Swiss Med Wkly. 2019;149:w14697
Published
23.01.2019

Summary

Tumour immunotherapy, and particularly immue checkpoint inhibitors, have resulted in considerable response rates in patients with metastatic cancer. However, most of these approaches are limited to immunogenic tumours. Based on its ability to stimulate cytotoxic T cells, interleukin-2 (IL-2) has been used to treat patients with metastatic melanoma and metastatic kidney cancer. Clinical efficacy achieved through high doses is countered by severe adverse effects on vascular endothelial cells and various organs, a short in vivo half-life, and the stimulation of regulatory T cells that counteract antitumour immune responses. Accumulating evidence suggests that IL-2 receptor β (CD122)-biased IL-2 formulations address the shortcomings of IL-2 cancer immunotherapy. This knowledge stems from studies using CD122-biased IL-2/anti-IL-2 antibody complexes (IL-2 complexes), which preferentially stimulate CD8+ T cells, while interaction with regulatory T cells and vascular endothelial cells is disfavoured by the anti-IL-2 antibody used. CD122-biased IL-2 complexes, when assessed in different mouse cancer models, cause stronger antitumour effects and significantly less adverse effects than high-dose IL-2. A recently developed and characterised anti-human IL-2 antibody, termed NARA1, forms human CD122-biased IL-2 complexes. Alternative strategies based on this concept, such as site-directed pegylation and mutation of IL-2, have also been pursued. Moreover, recent data have shown that a combination of CD122-biased IL-2 formulations with immune checkpoint inhibitors, antigen-specific immunotherapy and epigenetic modifying drugs results in synergistic anti-cancer effects in various tumour models. Thus, CD122-biased IL-2 approaches constitute a novel class of immunotherapy for metastatic cancer that has the potential to complement and increase the efficacy of other antitumour strategies.

References

  1. WHO. Cancer. World Health Organization, Media Centre, Fact Sheet, Updated February 2017. http://www.who.int/mediacentre/factsheets/fs297/en/
  2. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. doi:.https://doi.org/10.1126/science.aaa8172
  3. Coley WB. The treatment of malignant tumours by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci. 1893;105(5):487–510.
  4. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–46. doi:.https://doi.org/10.1038/nrc3670
  5. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8. doi:.https://doi.org/10.4049/jimmunol.1490019
  6. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi:.https://doi.org/10.1056/NEJMoa1003466
  7. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–8. doi:.https://doi.org/10.1126/science.181845
  8. Robb RJ, Smith KA. Heterogeneity of human T-cell growth factor(s) due to variable glycosylation. Mol Immunol. 1981;18(12):1087–94. doi:.https://doi.org/10.1016/0161-5890(81)90024-9
  9. Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, et al. Structure and expression of a cloned cDNA for human interleukin-2. Nature. 1983;302(5906):305–10. doi:.https://doi.org/10.1038/302305a0
  10. Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O. The role of cytokines in T-cell memory in health and disease. Immunol Rev. 2018;283(1):176–93. doi:.https://doi.org/10.1111/imr.12644
  11. Klapper JA, Downey SG, Smith FO, Yang JC, Hughes MS, Kammula US, et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma : a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer. 2008;113(2):293–301. doi:.https://doi.org/10.1002/cncr.23552
  12. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12(3):180–90. doi:.https://doi.org/10.1038/nri3156
  13. Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: Biology, Design and Application. Trends Immunol. 2015;36(12):763–77. doi:.https://doi.org/10.1016/j.it.2015.10.003
  14. Anderson TD, Hayes TJ, Gately MK, Bontempo JM, Stern LL, Truitt GA. Toxicity of human recombinant interleukin-2 in the mouse is mediated by interleukin-activated lymphocytes. Separation of efficacy and toxicity by selective lymphocyte subset depletion. Lab Invest. 1988;59(5):598–612.
  15. Gately MK, Anderson TD, Hayes TJ. Role of asialo-GM1-positive lymphoid cells in mediating the toxic effects of recombinant IL-2 in mice. J Immunol. 1988;141(1):189–200.
  16. Peace DJ, Cheever MA. Toxicity and therapeutic efficacy of high-dose interleukin 2. In vivo infusion of antibody to NK-1.1 attenuates toxicity without compromising efficacy against murine leukemia. J Exp Med. 1989;169(1):161–73. doi:.https://doi.org/10.1084/jem.169.1.161
  17. Assier E, Jullien V, Lefort J, Moreau JL, Di Santo JP, Vargaftig BB, et al. NK cells and polymorphonuclear neutrophils are both critical for IL-2-induced pulmonary vascular leak syndrome. J Immunol. 2004;172(12):7661–8. doi:.https://doi.org/10.4049/jimmunol.172.12.7661
  18. Fraker DL, Langstein HN, Norton JA. Passive immunization against tumor necrosis factor partially abrogates interleukin 2 toxicity. J Exp Med. 1989;170(3):1015–20. doi:.https://doi.org/10.1084/jem.170.3.1015
  19. Boyman O, Surh CD, Sprent J. Potential use of IL-2/anti-IL-2 antibody immune complexes for the treatment of cancer and autoimmune disease. Expert Opin Biol Ther. 2006;6(12):1323–31. doi:.https://doi.org/10.1517/14712598.6.12.1323
  20. Krieg C, Létourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci USA. 2010;107(26):11906–11. doi:. Correction in: Proc Natl Acad Sci USA. 2012;109(1):345. doi:https://doi.org/10.1073/pnas.1119897109https://doi.org/10.1073/pnas.1002569107
  21. Arenas-Ramirez N, Zou C, Popp S, Zingg D, Brannetti B, Wirth E, et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci Transl Med. 2016;8(367):367ra166. doi:.https://doi.org/10.1126/scitranslmed.aag3187
  22. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006;311(5769):1924–7. doi:.https://doi.org/10.1126/science.1122927
  23. Létourneau S, van Leeuwen EM, Krieg C, Martin C, Pantaleo G, Sprent J, et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor α subunit CD25. Proc Natl Acad Sci USA. 2010;107(5):2171–6. doi:.https://doi.org/10.1073/pnas.0909384107
  24. Levin AM, Bates DL, Ring AM, Krieg C, Lin JT, Su L, et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature. 2012;484(7395):529–33. doi:.https://doi.org/10.1038/nature10975
  25. Garber K. Cytokine resurrection: engineered IL-2 ramps up immuno-oncology responses. Nat Biotechnol. 2018;36(5):378–9. doi:.https://doi.org/10.1038/nbt0518-378
  26. Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK, Kirk PB, et al. NKTR-214, an Engineered Cytokine with Biased IL2 Receptor Binding, Increased Tumor Exposure, and Marked Efficacy in Mouse Tumor Models. Clin Cancer Res. 2016;22(3):680–90. doi:.https://doi.org/10.1158/1078-0432.CCR-15-1631
  27. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–62. doi:.https://doi.org/10.1038/ni1536
  28. Létourneau S, Krieg C, Pantaleo G, Boyman O. IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol. 2009;123(4):758–62. doi:.https://doi.org/10.1016/j.jaci.2009.02.011
  29. Zingg D, Debbache J, Schaefer SM, Tuncer E, Frommel SC, Cheng P, et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun. 2015;6(1):6051. doi:.https://doi.org/10.1038/ncomms7051
  30. Spohn G, Arenas-Ramirez N, Bouchaud G, Boyman O. Endogenous polyclonal anti-IL-1 antibody responses potentiate IL-1 activity during pathogenic inflammation. J Allergy Clin Immunol. 2017;139(6):1957–1965.e3. doi:.https://doi.org/10.1016/j.jaci.2016.09.033
  31. Jones AT, Ziltener HJ. Enhancement of the biologic effects of interleukin-3 in vivo by anti-interleukin-3 antibodies. Blood. 1993;82(4):1133–41.
  32. Finkelman FD, Madden KB, Morris SC, Holmes JM, Boiani N, Katona IM, et al. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol. 1993;151(3):1235–44.
  33. Klein B, Brailly H. Cytokine-binding proteins: stimulating antagonists. Immunol Today. 1995;16(5):216–20. doi:.https://doi.org/10.1016/0167-5699(95)80161-8
  34. Montero-Julian FA, Klein B, Gautherot E, Brailly H. Pharmacokinetic study of anti-interleukin-6 (IL-6) therapy with monoclonal antibodies: enhancement of IL-6 clearance by cocktails of anti-IL-6 antibodies. Blood. 1995;85(4):917–24.
  35. Boyman O, Ramsey C, Kim DM, Sprent J, Surh CD. IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol. 2008;180(11):7265–75. doi:.https://doi.org/10.4049/jimmunol.180.11.7265
  36. Schmutz S, Bosco N, Chappaz S, Boyman O, Acha-Orbea H, Ceredig R, et al. Cutting edge: IL-7 regulates the peripheral pool of adult ROR gamma+ lymphoid tissue inducer cells. J Immunol. 2009;183(4):2217–21. doi:.https://doi.org/10.4049/jimmunol.0802911
  37. Rosalia RA, Arenas-Ramirez N, Bouchaud G, Raeber ME, Boyman O. Use of enhanced interleukin-2 formulations for improved immunotherapy against cancer. Curr Opin Chem Biol. 2014;23:39–46. doi:.https://doi.org/10.1016/j.cbpa.2014.09.006
  38. Woytschak J, Keller N, Krieg C, Impellizzieri D, Thompson RW, Wynn TA, et al. Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation. Immunity. 2016;45(1):172–84. doi:.https://doi.org/10.1016/j.immuni.2016.06.025
  39. Verdeil G, Marquardt K, Surh CD, Sherman LA. Adjuvants targeting innate and adaptive immunity synergize to enhance tumor immunotherapy. Proc Natl Acad Sci USA. 2008;105(43):16683–8. doi:.https://doi.org/10.1073/pnas.0805054105
  40. Cho HI, Reyes-Vargas E, Delgado JC, Celis E. A potent vaccination strategy that circumvents lymphodepletion for effective antitumor adoptive T-cell therapy. Cancer Res. 2012;72(8):1986–95. doi:.https://doi.org/10.1158/0008-5472.CAN-11-3246
  41. Redmond WL, Triplett T, Floyd K, Weinberg AD. Dual anti-OX40/IL-2 therapy augments tumor immunotherapy via IL-2R-mediated regulation of OX40 expression. PLoS One. 2012;7(4):e34467. doi:.https://doi.org/10.1371/journal.pone.0034467
  42. Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, et al. The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy. Cell Rep. 2017;20(4):854–67. doi:.https://doi.org/10.1016/j.celrep.2017.07.007
  43. Tomala J, Chmelova H, Mrkvan T, Rihova B, Kovar M. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J Immunol. 2009;183(8):4904–12. doi:.https://doi.org/10.4049/jimmunol.0900284
  44. Klein C, Waldhauer I, Nicolini VG, Freimoser-Grundschober A, Nayak T, Vugts DJ, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. OncoImmunology. 2017;6(3):e1277306. doi:.https://doi.org/10.1080/2162402X.2016.1277306
  45. Press release by Bristol-Myers Squibb & Nektar Therapeutics: Preliminary data for NKTR-214 in combination with Opdivo (nivolumab) for patients with stage IV metastatic melanoma, renal cell carcinoma, and urothelial cancers presented at ASCO 2018.
  46. Klevorn LE, Berrien-Elliott MM, Yuan J, Kuehm LM, Felock GD, Crowe SA, et al. Rescue of Tolerant CD8+ T Cells during Cancer Immunotherapy with IL2:Antibody Complexes. Cancer Immunol Res. 2016;4(12):1016–26. doi:.https://doi.org/10.1158/2326-6066.CIR-16-0159