Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 148 No. 0304 (2018)

Preventing HIV transmission through blockade of CCR5: rationale, progress and perspectives

  • Elsa Martins
  • Ilaria Scurci
  • Oliver Hartley
DOI
https://doi.org/10.4414/smw.2018.14580
Cite this as:
Swiss Med Wkly. 2018;148:w14580
Published
26.01.2018

Summary

Of the two million people estimated to be newly infected with human immunodeficiency virus (HIV) every year, 95% live in poorer regions of the world where effective HIV treatment is not universally available. Strategies to reduce the spread of HIV infection, which predominantly occurs via sexual contact, are urgently required. In the absence of an effective vaccine, a number of approaches to prevent HIV infection have been developed. These include using potent anti-HIV drugs prophylactically, either through systemic administration or topical application to the mucosal tissues that HIV initially encounters during sexual transmission. Genetic deficiency of the chemokine receptor CCR5 provides individuals with a remarkable degree of protection from HIV acquisition. This is because CCR5 is the major coreceptor used by HIV to infect new target cells. Since CCR5 deficiency does not appear to carry any health disadvantages, targeting the receptor is a promising strategy for both therapy and prevention of HIV.

In this review we first describe the advantages and limitations of the currently available strategies for HIV prevention, then we focus on strategies targeting CCR5, covering the progress that has been made in developing different classes of CCR5 inhibitors for prophylaxis, and the perspectives for their future development as new weapons in the global fight against HIV/AIDS.

References

  1. De Clercq E. Toward improved anti-HIV chemotherapy: therapeutic strategies for intervention with HIV infections. J Med Chem. 1995;38(14):2491–517. Published online July 07, 1995. doi:.https://doi.org/10.1021/jm00014a001
  2. Hawkins T. Understanding and managing the adverse effects of antiretroviral therapy. Antiviral Res. 2010;85(1):201–9. Published online October 28, 2009. doi:.https://doi.org/10.1016/j.antiviral.2009.10.016
  3. Tseng A, Seet J, Phillips EJ. The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future. Br J Clin Pharmacol. 2015;79(2):182–94. doi:.https://doi.org/10.1111/bcp.12403
  4. Guidelines WHO, Approved by the Guidelines Review Committee. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. Geneva: World Health Organization; 2013.
  5. Günthard HF, Saag MS, Benson CA, del Rio C, Eron JJ, Gallant JE, et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2016 Recommendations of the International Antiviral Society-USA Panel. JAMA. 2016;316(2):191–210. doi:.https://doi.org/10.1001/jama.2016.8900
  6. Lee FJ, Amin J, Carr A. Efficacy of initial antiretroviral therapy for HIV-1 infection in adults: a systematic review and meta-analysis of 114 studies with up to 144 weeks’ follow-up. PLoS One. 2014;9(5):e97482. doi:.https://doi.org/10.1371/journal.pone.0097482
  7. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al.; HPTN 052 Study Team. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505. doi:.https://doi.org/10.1056/NEJMoa1105243
  8. UNAIDS. Fast-Track: ending the AIDS epidemic by 2030. Geneva: Joint United Nations Programme on HIV/AIDS, 2014.
  9. Jamieson D, Kellerman SE. The 90 90 90 strategy to end the HIV Pandemic by 2030: Can the supply chain handle it? J Int AIDS Soc. 2016;19(1):20917. doi:.https://doi.org/10.7448/IAS.19.1.20917
  10. Bain LE, Nkoke C, Noubiap JJN. UNAIDS 90-90-90 targets to end the AIDS epidemic by 2020 are not realistic: comment on “Can the UNAIDS 90-90-90 target be achieved? A systematic analysis of national HIV treatment cascades”. BMJ Glob Health. 2017;2(2):e000227. doi:.https://doi.org/10.1136/bmjgh-2016-000227
  11. Corey L, Gray GE. Preventing acquisition of HIV is the only path to an AIDS-free generation. Proc Natl Acad Sci USA. 2017;114(15):3798–800. doi:.https://doi.org/10.1073/pnas.1703236114
  12. Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine. 2013;31(35):3502–18. doi:.https://doi.org/10.1016/j.vaccine.2013.05.018
  13. Fauci AS, Marston HD. Toward an HIV vaccine: A scientific journey. Science. 2015;349(6246):386–7. doi:.https://doi.org/10.1126/science.aac6300
  14. Haynes BF, Mascola JR. The quest for an antibody-based HIV vaccine. Immunol Rev. 2017;275(1):5–10. doi:.https://doi.org/10.1111/imr.12517
  15. Weller S, Davis K. Condom effectiveness in reducing heterosexual HIV transmission. Cochrane Database Syst Rev. 2002;(1):CD003255. Published online March 01, 2002. doi:.https://doi.org/10.1002/14651858.cd003255
  16. Smith DK, Herbst JH, Zhang X, Rose CE. Condom effectiveness for HIV prevention by consistency of use among men who have sex with men in the United States. J Acquir Immune Defic Syndr. 2015;68(3):337–44. Published online December 04, 2014. doi:.https://doi.org/10.1097/QAI.0000000000000461
  17. Sarkar NN. Barriers to condom use. Eur J Contracept Reprod Health Care. 2008;13(2):114–22. Published online May 10, 2008. doi:.https://doi.org/10.1080/13625180802011302
  18. Morris BJ, Wamai RG. Biological basis for the protective effect conferred by male circumcision against HIV infection. Int J STD AIDS. 2012;23(3):153–9. Published online May 15, 2012. doi:.https://doi.org/10.1258/ijsa.2011.011228
  19. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2(11):e298. doi:. Correction in: PLoS Med;3(5):e226. doi:https://doi.org/10.1371/journal.pmed.0020298
  20. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, et al. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369(9562):643–56. Published online February 27, 2007. doi:.https://doi.org/10.1016/S0140-6736(07)60312-2
  21. Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007;369(9562):657–66. Published online February 27, 2007. doi:.https://doi.org/10.1016/S0140-6736(07)60313-4
  22. WHO/UNAIDS, ed. New data on male circumcision and HIV prevention: policy and programme implications. WHO/UNAIDS Technical Consultation, Male Circumcision and HIV Prevention: Research Implications for Policy and Programming; 2007; Geneva, Switzerland: World Health Organization.
  23. Warner L, Ghanem KG, Newman DR, Macaluso M, Sullivan PS, Erbelding EJ. Male circumcision and risk of HIV infection among heterosexual African American men attending Baltimore sexually transmitted disease clinics. J Infect Dis. 2009;199(1):59–65. Published online December 18, 2008. doi:.https://doi.org/10.1086/595569
  24. Wawer MJ, Makumbi F, Kigozi G, Serwadda D, Watya S, Nalugoda F, et al. Circumcision in HIV-infected men and its effect on HIV transmission to female partners in Rakai, Uganda: a randomised controlled trial. Lancet. 2009;374(9685):229–37. doi:.https://doi.org/10.1016/S0140-6736(09)60998-3
  25. Baeten JM, Donnell D, Kapiga SH, Ronald A, John-Stewart G, Inambao M, et al.; Partners in Prevention HSV/HIV Transmission Study Team. Male circumcision and risk of male-to-female HIV-1 transmission: a multinational prospective study in African HIV-1-serodiscordant couples. AIDS. 2010;24(5):737–44. doi:.https://doi.org/10.1097/QAD.0b013e32833616e0
  26. Sánchez J, Sal Y Rosas VG, Hughes JP, Baeten JM, Fuchs J, Buchbinder SP, et al. Male circumcision and risk of HIV acquisition among MSM. AIDS. 2011;25(4):519–23. doi:.https://doi.org/10.1097/QAD.0b013e328340fd81
  27. Wiysonge CS, Kongnyuy EJ, Shey M, Muula AS, Navti OB, Akl EA, et al. Male circumcision for prevention of homosexual acquisition of HIV in men. Cochrane Database Syst Rev. 2011;(6):CD007496. Published online June 17, 2011. doi:.https://doi.org/10.1002/14651858.CD007496.pub2
  28. Gerberding JL. Prophylaxis for occupational exposure to HIV. Ann Intern Med. 1996;125(6):497–501. doi:.https://doi.org/10.7326/0003-4819-125-6-199609150-00011
  29. Meylan PR, Francioli P, Decrey H, Chave JP, Glauser MP. Post-exposure prophylaxis against HIV infection in health care workers. Lancet. 1988;331(8583):481. Published online February 27, 1988. doi:.https://doi.org/10.1016/S0140-6736(88)91282-2
  30. Melvin AJ, Frenkel LM. Prevention of mother-to-infant transmission of HIV-1. Mol Med Today. 1997;3(6):242–5. Published online June 01, 1997. doi:.https://doi.org/10.1016/S1357-4310(97)01029-0
  31. De Santis M, Noia G, Caruso A, Mancuso S. Guidelines for the use of zidovudine in pregnant women with HIV infection. Drugs. 1995;50(1):43–7. Published online July 01, 1995. doi:.https://doi.org/10.2165/00003495-199550010-00004
  32. Paxton LA, Hope T, Jaffe HW. Pre-exposure prophylaxis for HIV infection: what if it works? Lancet. 2007;370(9581):89–93. Published online July 10, 2007. doi:.https://doi.org/10.1016/S0140-6736(07)61053-8
  33. James JS. Tenofovir approved: broad indication. AIDS Treat News. 2001;(373):2–3. Published online January 05, 2002.
  34. Two-once-daily fixed-dose NRTI combinations for HIV. Med Lett Drugs Ther. 2005;47(1203):19–20. Published online March 16, 2005.
  35. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al.; iPrEx Study Team. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363(27):2587–99. doi:.https://doi.org/10.1056/NEJMoa1011205
  36. Molina JM, Capitant C, Spire B, Pialoux G, Cotte L, Charreau I, et al.; ANRS IPERGAY Study Group. On-Demand Preexposure Prophylaxis in Men at High Risk for HIV-1 Infection. N Engl J Med. 2015;373(23):2237–46. Published online December 02, 2015. doi:.https://doi.org/10.1056/NEJMoa1506273
  37. McCormack S, Dunn DT, Desai M, Dolling DI, Gafos M, Gilson R, et al. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. Lancet. 2016;387(10013):53–60. doi:.https://doi.org/10.1016/S0140-6736(15)00056-2
  38. Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA, Leethochawalit M, et al.; Bangkok Tenofovir Study Group. Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2013;381(9883):2083–90. Published online June 19, 2013. doi:.https://doi.org/10.1016/S0140-6736(13)61127-7
  39. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, et al.; Partners PrEP Study Team. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med. 2012;367(5):399–410. doi:.https://doi.org/10.1056/NEJMoa1108524
  40. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM, et al.; TDF2 Study Group. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med. 2012;367(5):423–34. Published online July 13, 2012. doi:.https://doi.org/10.1056/NEJMoa1110711
  41. Cáceres CF, Borquez A, Klausner JD, Baggaley R, Beyrer C. Implementation of pre-exposure prophylaxis for human immunodeficiency virus infection: progress and emerging issues in research and policy. J Int AIDS Soc. 2016;19(7(Suppl 6), Suppl 6):21108.
  42. Van Damme L, Corneli A, Ahmed K, Agot K, Lombaard J, Kapiga S, et al.; FEM-PrEP Study Group. Preexposure prophylaxis for HIV infection among African women. N Engl J Med. 2012;367(5):411–22. doi:.https://doi.org/10.1056/NEJMoa1202614
  43. Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, et al.; VOICE Study Team. Tenofovir-based preexposure prophylaxis for HIV infection among African women. N Engl J Med. 2015;372(6):509–18. doi:.https://doi.org/10.1056/NEJMoa1402269
  44. Patterson KB, Prince HA, Kraft E, Jenkins AJ, Shaheen NJ, Rooney JF, et al. Penetration of tenofovir and emtricitabine in mucosal tissues: implications for prevention of HIV-1 transmission. Sci Transl Med. 2011;3(112):112re4. doi:.https://doi.org/10.1126/scitranslmed.3003174
  45. D’Cruz OJ, Uckun FM. Clinical development of microbicides for the prevention of HIV infection. Curr Pharm Des. 2004;10(3):315–36. doi:.https://doi.org/10.2174/1381612043386374
  46. Grant RM, Hamer D, Hope T, Johnston R, Lange J, Lederman MM, et al. Whither or wither microbicides? Science. 2008;321(5888):532–4. doi:.https://doi.org/10.1126/science.1160355
  47. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al.; CAPRISA 004 Trial Group. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74. doi:.https://doi.org/10.1126/science.1193748
  48. Rees H, Delany-Moretlwe S, Baron D, Lombard C, Gray G, Myer L, et al., eds. FACTS 001 phase III trial of pericoital tenofovir 1% gel for HIV prevention in women. Conference on Retroviruses and Opportunistic Infections (CROI); 2015.
  49. Brache V, Faundes A. Contraceptive vaginal rings: a review. Contraception. 2010;82(5):418–27. doi:.https://doi.org/10.1016/j.contraception.2010.04.012
  50. Van Herrewege Y, Michiels J, Van Roey J, Fransen K, Kestens L, Balzarini J, et al. In vitro evaluation of nonnucleoside reverse transcriptase inhibitors UC-781 and TMC120-R147681 as human immunodeficiency virus microbicides. Antimicrob Agents Chemother. 2004;48(1):337–9. doi:.https://doi.org/10.1128/AAC.48.1.337-339.2004
  51. Gruzdev B, Horban A, Boron-Kaczmarska A, Gille D, Van’t Klooster G, Pauwels R, eds. TMC120, a new non-nucleoside reverse transcriptase inhibitor, is a potent antiretroviral in treatment naive, HIV-1 infected subjects. 8th Conference on Retroviruses and Opportunistic Infections, Chicago; 2001.
  52. Baeten JM, Palanee-Phillips T, Brown ER, Schwartz K, Soto-Torres LE, Govender V, et al.; MTN-020–ASPIRE Study Team. Use of a Vaginal Ring Containing Dapivirine for HIV-1 Prevention in Women. N Engl J Med. 2016;375(22):2121–32. doi:.https://doi.org/10.1056/NEJMoa1506110
  53. Nel A, van Niekerk N, Kapiga S, Bekker L-G, Gama C, Gill K, et al.; Ring Study Team. Safety and Efficacy of a Dapivirine Vaginal Ring for HIV Prevention in Women. N Engl J Med. 2016;375(22):2133–43. doi:.https://doi.org/10.1056/NEJMoa1602046
  54. Mugo NR, Ngure K, Kiragu M, Irungu E, Kilonzo N. The preexposure prophylaxis revolution; from clinical trials to programmatic implementation. Curr Opin HIV AIDS. 2016;11(1):80–6. doi:.https://doi.org/10.1097/COH.0000000000000224
  55. Fernández-Romero JA, Deal C, Herold BC, Schiller J, Patton D, Zydowsky T, et al. Multipurpose prevention technologies: the future of HIV and STI protection. Trends Microbiol. 2015;23(7):429–36. doi:.https://doi.org/10.1016/j.tim.2015.02.006
  56. Landovitz RJ, Kofron R, McCauley M. The promise and pitfalls of long-acting injectable agents for HIV prevention. Curr Opin HIV AIDS. 2016;11(1):122–8. doi:.https://doi.org/10.1097/COH.0000000000000219
  57. Baggaley RF, White RG, Boily MC. HIV transmission risk through anal intercourse: systematic review, meta-analysis and implications for HIV prevention. Int J Epidemiol. 2010;39(4):1048–63. Published online April 22, 2010. doi:.https://doi.org/10.1093/ije/dyq057
  58. McBride KR, Fortenberry JD. Heterosexual anal sexuality and anal sex behaviors: a review. J Sex Res. 2010;47(2-3):123–36. doi:.https://doi.org/10.1080/00224490903402538
  59. Nuttall J, Kashuba A, Wang R, White N, Allen P, Roberts J, et al. Pharmacokinetics of tenofovir following intravaginal and intrarectal administration of tenofovir gel to rhesus macaques. Antimicrob Agents Chemother. 2012;56(1):103–9. doi:.https://doi.org/10.1128/AAC.00597-11
  60. Malcolm RK, Lowry D, Boyd P, Geer L, Veazey RS, Goldman L, et al. Pharmacokinetics of a CCR5 inhibitor in rhesus macaques following vaginal, rectal and oral application. J Antimicrob Chemother. 2014;69(5):1325–9. doi:.https://doi.org/10.1093/jac/dkt506
  61. Holt JD, Cameron D, Dias N, Holding J, Muntendam A, Oostebring F, et al. The sheep as a model of preclinical safety and pharmacokinetic evaluations of candidate microbicides. Antimicrob Agents Chemother. 2015;59(7):3761–70. doi:.https://doi.org/10.1128/AAC.04954-14
  62. McGowan I. The development of rectal microbicides for HIV prevention. Expert Opin Drug Deliv. 2014;11(1):69–82. Published online November 26, 2013. doi:.https://doi.org/10.1517/17425247.2013.860132
  63. Cranston RD, Lama JR, Richardson BA, Carballo-Diéguez A, Kunjara Na Ayudhya RP, Liu K, et al.; MTN-017 Protocol Team. MTN-017: A Rectal Phase 2 Extended Safety and Acceptability Study of Tenofovir Reduced-Glycerin 1% Gel. Clin Infect Dis. 2017;64(5):614–20. Published online December 18, 2016. doi:.https://doi.org/10.1093/cid/ciw832
  64. Saxena D, Li Y, Yang L, Pei Z, Poles M, Abrams WR, et al. Human microbiome and HIV/AIDS. Curr HIV/AIDS Rep. 2012;9(1):44–51. doi:.https://doi.org/10.1007/s11904-011-0103-7
  65. Sewankambo N, Gray RH, Wawer MJ, Paxton L, McNairn D, Wabwire-Mangen F, et al. HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet. 1997;350(9077):546–50. doi:.https://doi.org/10.1016/S0140-6736(97)01063-5
  66. Brotman RM. Vaginal microbiome and sexually transmitted infections: an epidemiologic perspective. J Clin Invest. 2011;121(12):4610–7. doi:.https://doi.org/10.1172/JCI57172
  67. Mirmonsef P, Spear GT. The barrier to HIV transmission provided by genital tract Lactobacillus colonization. Am J Reprod Immunol. 2014;71(6):531–6. Published online March 26, 2014. doi:.https://doi.org/10.1111/aji.12232
  68. Lard-Whiteford SL, Matecka D, O’Rear JJ, Yuen IS, Litterst C, Reichelderfer P ; International Working Group on Microbicides. Recommendations for the nonclinical development of topical microbicides for prevention of HIV transmission: an update. J Acquir Immune Defic Syndr. 2004;36(1):541–52. doi:.https://doi.org/10.1097/00126334-200405010-00001
  69. Klatt NR, Cheu R, Birse K, Zevin AS, Perner M, Noël-Romas L, et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science. 2017;356(6341):938–45. Published online June 03, 2017. doi:.https://doi.org/10.1126/science.aai9383
  70. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8. doi:.https://doi.org/10.1126/science.1110591
  71. Whitfield T, Torkington A, van Halsema C. Profile of cabotegravir and its potential in the treatment and prevention of HIV-1 infection: evidence to date. HIV AIDS (Auckl). 2016;8:157–64. doi:.https://doi.org/10.2147/HIV.S97920
  72. Andrews CD, Yueh YL, Spreen WR, St Bernard L, Boente-Carrera M, Rodriguez K, et al. A long-acting integrase inhibitor protects female macaques from repeated high-dose intravaginal SHIV challenge. Sci Transl Med. 2015;7(270):270ra4. doi:.https://doi.org/10.1126/scitranslmed.3010298
  73. Andrews CD, Spreen WR, Mohri H, Moss L, Ford S, Gettie A, et al. Long-acting integrase inhibitor protects macaques from intrarectal simian/human immunodeficiency virus. Science. 2014;343(6175):1151–4. doi:.https://doi.org/10.1126/science.1248707
  74. Markowitz M, Frank I, Grant RM, Mayer KH, Elion R, Goldstein D, et al. Safety and tolerability of long-acting cabotegravir injections in HIV-uninfected men (ECLAIR): a multicentre, double-blind, randomised, placebo-controlled, phase 2a trial. Lancet HIV. 2017;4(8):e331–40. Published online May 27, 2017. doi:.https://doi.org/10.1016/S2352-3018(17)30068-1
  75. Shafer RW. Human Immunodeficiency Virus Type 1 Drug Resistance Mutations Update. J Infect Dis. 2017;216(suppl_9):S843–6. Published online October 03, 2017. doi:.https://doi.org/10.1093/infdis/jix398
  76. TenoRes Study Group. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: a multicentre retrospective cohort study. Lancet Infect Dis. 2016;16(5):565–75. doi:.https://doi.org/10.1016/S1473-3099(15)00536-8
  77. Parikh UM, Mellors JW. Should we fear resistance from tenofovir/emtricitabine preexposure prophylaxis? Curr Opin HIV AIDS. 2016;11(1):49–55. doi:.https://doi.org/10.1097/COH.0000000000000209
  78. Selhorst P, Vazquez AC, Terrazas-Aranda K, Michiels J, Vereecken K, Heyndrickx L, et al. Human immunodeficiency virus type 1 resistance or cross-resistance to nonnucleoside reverse transcriptase inhibitors currently under development as microbicides. Antimicrob Agents Chemother. 2011;55(4):1403–13. doi:.https://doi.org/10.1128/AAC.01426-10
  79. Yoshinaga T, Kobayashi M, Seki T, Miki S, Wakasa-Morimoto C, Suyama-Kagitani A, et al. Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob Agents Chemother. 2015;59(1):397–406. doi:.https://doi.org/10.1128/AAC.03909-14
  80. Margolis AM, Heverling H, Pham PA, Stolbach A. A review of the toxicity of HIV medications. J Med Toxicol. 2014;10(1):26–39. doi:.https://doi.org/10.1007/s13181-013-0325-8
  81. Peñafiel J, de Lazzari E, Padilla M, Rojas J, Gonzalez-Cordon A, Blanco JL, et al. Tolerability of integrase inhibitors in a real-life setting. J Antimicrob Chemother. 2017;72(6):1752–9. Published online March 24, 2017. doi:.https://doi.org/10.1093/jac/dkx053
  82. Doms RW, Moore JP. HIV-1 membrane fusion: targets of opportunity. J Cell Biol. 2000;151(2):F9–14. doi:.https://doi.org/10.1083/jcb.151.2.F9
  83. Chan DC, Kim PS. HIV entry and its inhibition. Cell. 1998;93(5):681–4. Published online June 18, 1998. doi:.https://doi.org/10.1016/S0092-8674(00)81430-0
  84. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells [see comments]. Science. 1995;270(5243):1811–5. doi:.https://doi.org/10.1126/science.270.5243.1811
  85. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872–7. doi:.https://doi.org/10.1126/science.272.5263.872
  86. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, et al. Identification of a major co-receptor for primary isolates of HIV-1 [see comments]. Nature. 1996;381(6584):661–6. doi:.https://doi.org/10.1038/381661a0
  87. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):667–73. doi:.https://doi.org/10.1038/381667a0
  88. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272(5270):1955–8. doi:.https://doi.org/10.1126/science.272.5270.1955
  89. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382(6594):833–5. doi:.https://doi.org/10.1038/382833a0
  90. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996;382(6594):829–33. doi:.https://doi.org/10.1038/382829a0
  91. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722–5. Published online August 22, 1996. doi:.https://doi.org/10.1038/382722a0
  92. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86(3):367–77. Published online August 09, 1996. doi:.https://doi.org/10.1016/S0092-8674(00)80110-5
  93. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al.; Multicenter AIDS Cohort Study; Multicenter Hemophilia Cohort Study; San Francisco City Cohort; ALIVE Study. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study [see comments]. [published erratum appears in Science 1996 Nov 15;274(5290):1069]. Science. 1996;273(5283):1856–62. doi:.https://doi.org/10.1126/science.273.5283.1856
  94. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2013;66(1):1–79. doi:.https://doi.org/10.1124/pr.113.007724
  95. Novembre J, Galvani AP, Slatkin M. The geographic spread of the CCR5 Delta32 HIV-resistance allele. PLoS Biol. 2005;3(11):e339. doi:.https://doi.org/10.1371/journal.pbio.0030339
  96. Dezzutti CS, Hladik F. Use of human mucosal tissue to study HIV-1 pathogenesis and evaluate HIV-1 prevention modalities. Curr HIV/AIDS Rep. 2013;10(1):12–20. doi:.https://doi.org/10.1007/s11904-012-0148-2
  97. Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. Infect Genet Evol. 2016;46:324–32. Published online July 30, 2016. doi:.https://doi.org/10.1016/j.meegid.2016.07.012
  98. Dezzutti CS. Animal and human mucosal tissue models to study HIV biomedical interventions: can we predict success? J Int AIDS Soc. 2015;18(1):20301. doi:.https://doi.org/10.7448/IAS.18.1.20301
  99. Hatziioannou T, Evans DT. Animal models for HIV/AIDS research. Nat Rev Microbiol. 2012;10(12):852–67. doi:.https://doi.org/10.1038/nrmicro2911
  100. Haase AT. Early events in sexual transmission of HIV and SIV and opportunities for interventions. Annu Rev Med. 2011;62(1):127–39. Published online November 09, 2010. doi:.https://doi.org/10.1146/annurev-med-080709-124959
  101. Ronen K, Sharma A, Overbaugh J. HIV transmission biology: translation for HIV prevention. AIDS. 2015;29(17):2219–27. doi:.https://doi.org/10.1097/QAD.0000000000000845
  102. Hladik F, Hope TJ. HIV infection of the genital mucosa in women. Curr HIV/AIDS Rep. 2009;6(1):20–8. Published online January 20, 2009. doi:.https://doi.org/10.1007/s11904-009-0004-1
  103. Carias AM, McCoombe S, McRaven M, Anderson M, Galloway N, Vandergrift N, et al. Defining the interaction of HIV-1 with the mucosal barriers of the female reproductive tract. J Virol. 2013;87(21):11388–400. doi:.https://doi.org/10.1128/JVI.01377-13
  104. Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol. 2006;6(11):859–68. doi:.https://doi.org/10.1038/nri1960
  105. Stieh DJ, Matias E, Xu H, Fought AJ, Blanchard JL, Marx PA, et al. Th17 Cells Are Preferentially Infected Very Early after Vaginal Transmission of SIV in Macaques. Cell Host Microbe. 2016;19(4):529–40. doi:.https://doi.org/10.1016/j.chom.2016.03.005
  106. Li Q, Estes JD, Schlievert PM, Duan L, Brosnahan AJ, Southern PJ, et al. Glycerol monolaurate prevents mucosal SIV transmission. Nature. 2009;458(7241):1034–8. doi:.https://doi.org/10.1038/nature07831
  107. Shang L, Duan L, Perkey KE, Wietgrefe S, Zupancic M, Smith AJ, et al. Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol. 2017;10(2):508–19. doi:.https://doi.org/10.1038/mi.2016.62
  108. Sagar M. HIV-1 transmission biology: selection and characteristics of infecting viruses. J Infect Dis. 2010;202(S2, Suppl 2):S289–96. doi:.https://doi.org/10.1086/655656
  109. Nawaz F, Cicala C, Van Ryk D, Block KE, Jelicic K, McNally JP, et al. The genotype of early-transmitting HIV gp120s promotes α (4) β(7)-reactivity, revealing α (4) β(7) +/CD4+ T cells as key targets in mucosal transmission. PLoS Pathog. 2011;7(2):e1001301. doi:.https://doi.org/10.1371/journal.ppat.1001301
  110. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med. 2009;206(6):1273–89. doi:.https://doi.org/10.1084/jem.20090378
  111. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA. 2008;105(21):7552–7. doi:.https://doi.org/10.1073/pnas.0802203105
  112. Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med. 2011;9(Suppl 1):S6. doi:.https://doi.org/10.1186/1479-5876-9-S1-S6
  113. Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA. 1999;96(10):5698–703. doi:.https://doi.org/10.1073/pnas.96.10.5698
  114. Baba M, Takashima K, Miyake H, Kanzaki N, Teshima K, Wang X, et al. TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob Agents Chemother. 2005;49(11):4584–91. doi:.https://doi.org/10.1128/AAC.49.11.4584-4591.2005
  115. Kim MB, Giesler KE, Tahirovic YA, Truax VM, Liotta DC, Wilson LJ. CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV. Expert Opin Investig Drugs. 2016;25(12):1377–92. Published online October 30, 2016. doi:.https://doi.org/10.1080/13543784.2016.1254615
  116. Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2017;66(1):180–90. Published online September 21, 2016. doi:.https://doi.org/10.1136/gutjnl-2016-312431
  117. Wolinsky SM, Veazey RS, Kunstman KJ, Klasse PJ, Dufour J, Marozsan AJ, et al. Effect of a CCR5 inhibitor on viral loads in macaques dual-infected with R5 and X4 primate immunodeficiency viruses. Virology. 2004;328(1):19–29. doi:.https://doi.org/10.1016/j.virol.2004.07.021
  118. Maeda K, Nakata H, Koh Y, Miyakawa T, Ogata H, Takaoka Y, et al. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol. 2004;78(16):8654–62. doi:.https://doi.org/10.1128/JVI.78.16.8654-8662.2004
  119. Crabb C. GlaxoSmithKline ends aplaviroc trials. AIDS. 2006;20(5):641. doi:.https://doi.org/10.1097/01.aids.0000216362.59657.96
  120. Strizki JM, Tremblay C, Xu S, Wojcik L, Wagner N, Gonsiorek W, et al. Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2005;49(12):4911–9. doi:.https://doi.org/10.1128/AAC.49.12.4911-4919.2005
  121. Dunkle L. Merck Research Laboratories. Vicriviroc Discontinued Investigator Letter. National AIDS Treatment Advocacy Project (NATAP): News Updates; 2010. Available from: http://www.natap.org/2010/newsUpdates/071510_02.html.
  122. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother. 2005;49(11):4721–32. doi:.https://doi.org/10.1128/AAC.49.11.4721-4732.2005
  123. Kuritzkes D, Kar S, Kirkpatrick P. Fresh from the Pipeline: Maraviroc. Nat Rev Drug Discov. 2008;7(1):15–6. doi:https://doi.org/10.1038/nrd2490
  124. Olson WC, Jacobson JM. CCR5 monoclonal antibodies for HIV-1 therapy. Curr Opin HIV AIDS. 2009;4(2):104–11. doi:.https://doi.org/10.1097/COH.0b013e3283224015
  125. Lalezari J, Lederman M, Yadavalli G, Para M, DeJesus E, Searle J, et al., eds. A phase 1, dose-escalation, placebo controlled study of a fully human monoclonal antibody (CCR5mAb004) against CCR5 in patients with CCR5 tropic HIV-1 infection. The 46th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2006 September 27-30; San Francisco, CA.
  126. Olson WC, Rabut GE, Nagashima KA, Tran DN, Anselma DJ, Monard SP, et al. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J Virol. 1999;73(5):4145–55.
  127. Reichert JM. Antibodies to watch in 2017. MAbs. 2017;9(2):167–81. doi:.https://doi.org/10.1080/19420862.2016.1269580
  128. Gardner MR, Kattenhorn LM, Kondur HR, von Schaewen M, Dorfman T, Chiang JJ, et al. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature. 2015;519(7541):87–91. doi:.https://doi.org/10.1038/nature14264
  129. Gardner MR, Farzan M. Engineering antibody-like inhibitors to prevent and treat HIV-1 infection. Curr Opin HIV AIDS. 2017;12(3):294–301. doi:.https://doi.org/10.1097/COH.0000000000000367
  130. Yang AG, Bai X, Huang XF, Yao C, Chen S. Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection. Proc Natl Acad Sci USA. 1997;94(21):11567–72. doi:.https://doi.org/10.1073/pnas.94.21.11567
  131. Steinberger P, Andris-Widhopf J, Bühler B, Torbett BE, Barbas CF, 3rd. Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc Natl Acad Sci USA. 2000;97(2):805–10. doi:.https://doi.org/10.1073/pnas.97.2.805
  132. Martínez MA, Gutiérrez A, Armand-Ugón M, Blanco J, Parera M, Gómez J, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS. 2002;16(18):2385–90. Published online December 04, 2002. doi:.https://doi.org/10.1097/00002030-200212060-00002
  133. Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides. 2003;13(5):303–12. Published online March 06, 2004. doi:.https://doi.org/10.1089/154545703322616989
  134. Wolstein O, Boyd M, Millington M, Impey H, Boyer J, Howe A, et al. Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. Mol Ther Methods Clin Dev. 2014;1:11. doi:.https://doi.org/10.1038/mtm.2013.11
  135. Li W, Yu M, Bai L, Bu D, Xu X. Downregulation of CCR5 expression on cells by recombinant adenovirus containing antisense CCR5, a possible measure to prevent HIV-1 from entering target cells. J Acquir Immune Defic Syndr. 2006;43(5):516–22. Published online October 05, 2006. doi:.https://doi.org/10.1097/01.qai.0000243102.95640.92
  136. Bai J, Gorantla S, Banda N, Cagnon L, Rossi J, Akkina R. Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol Ther. 2000;1(3):244–54. Published online August 10, 2000. doi:.https://doi.org/10.1006/mthe.2000.0038
  137. Mani M, Kandavelou K, Dy FJ, Durai S, Chandrasegaran S. Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. 2005;335(2):447–57. Published online August 09, 2005. doi:.https://doi.org/10.1016/j.bbrc.2005.07.089
  138. Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39(21):9283–93. doi:.https://doi.org/10.1093/nar/gkr597
  139. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–2. Published online January 31, 2013. doi:.https://doi.org/10.1038/nbt.2507
  140. Trkola A, Paxton WA, Monard SP, Hoxie JA, Siani MA, Thompson DA, et al. Genetic subtype-independent inhibition of human immunodeficiency virus type 1 replication by CC and CXC chemokines. J Virol. 1998;72(1):396–404.
  141. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005;307(5714):1434–40. doi:.https://doi.org/10.1126/science.1101160
  142. Arenzana-Seisdedos F, Virelizier JL, Rousset D, Clark-Lewis I, Loetscher P, Moser B, et al. HIV blocked by chemokine antagonist. Nature. 1996;383(6599):400. doi:.https://doi.org/10.1038/383400a0
  143. Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 1997;276(5310):276–9. doi:.https://doi.org/10.1126/science.276.5310.276
  144. Hartley O, Gaertner H, Wilken J, Thompson D, Fish R, Ramos A, et al. Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors. Proc Natl Acad Sci USA. 2004;101(47):16460–5. doi:.https://doi.org/10.1073/pnas.0404802101
  145. Gaertner H, Lebeau O, Borlat I, Cerini F, Dufour B, Kuenzi G, et al. Highly potent HIV inhibition: engineering a key anti-HIV structure from PSC-RANTES into MIP-1 beta/CCL4. Protein Eng Des Sel. 2008;21(2):65–72. doi:.https://doi.org/10.1093/protein/gzm079
  146. Veazey RS, Klasse PJ, Schader SM, Hu Q, Ketas TJ, Lu M, et al. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature. 2005;438(7064):99–102. doi:.https://doi.org/10.1038/nature04055
  147. Veazey RS, Klasse PJ, Ketas TJ, Reeves JD, Piatak M, Jr, Kunstman K, et al. Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection. J Exp Med. 2003;198(10):1551–62. doi:.https://doi.org/10.1084/jem.20031266
  148. Massud I, Aung W, Martin A, Bachman S, Mitchell J, Aubert R, et al. Lack of prophylactic efficacy of oral maraviroc in macaques despite high drug concentrations in rectal tissues. J Virol. 2013;87(16):8952–61. Published online June 07, 2013. doi:.https://doi.org/10.1128/JVI.01204-13
  149. Neff CP, Kurisu T, Ndolo T, Fox K, Akkina R. A topical microbicide gel formulation of CCR5 antagonist maraviroc prevents HIV-1 vaginal transmission in humanized RAG-hu mice. PLoS One. 2011;6(6):e20209. Published online June 16, 2011. doi:.https://doi.org/10.1371/journal.pone.0020209
  150. Veazey RS, Ketas TJ, Dufour J, Moroney-Rasmussen T, Green LC, Klasse PJ, et al. Protection of rhesus macaques from vaginal infection by vaginally delivered maraviroc, an inhibitor of HIV-1 entry via the CCR5 co-receptor. J Infect Dis. 2010;202(5):739–44. Published online July 16, 2010. doi:.https://doi.org/10.1086/655661
  151. Neff CP, Ndolo T, Tandon A, Habu Y, Akkina R. Oral pre-exposure prophylaxis by anti-retrovirals raltegravir and maraviroc protects against HIV-1 vaginal transmission in a humanized mouse model. PLoS One. 2010;5(12):e15257. doi:.https://doi.org/10.1371/journal.pone.0015257
  152. Veazey RS, Ling B, Green LC, Ribka EP, Lifson JD, Piatak M, Jr, et al. Topically applied recombinant chemokine analogues fully protect macaques from vaginal simian-human immunodeficiency virus challenge. J Infect Dis. 2009;199(10):1525–7. doi:.https://doi.org/10.1086/598685
  153. Veazey RS, Springer MS, Marx PA, Dufour J, Klasse PJ, Moore JP. Protection of macaques from vaginal SHIV challenge by an orally delivered CCR5 inhibitor. Nat Med. 2005;11(12):1293–4. doi:.https://doi.org/10.1038/nm1321
  154. Coll J, Moltó J, Boix J, Gómez-Mora E, Else L, García E, et al. Single oral dose of maraviroc does not prevent ex-vivo HIV infection of rectal mucosa in HIV-1 negative human volunteers. AIDS. 2015;29(16):2149–54. Published online November 07, 2015. doi:.https://doi.org/10.1097/QAD.0000000000000769
  155. Fox J, Tiraboschi JM, Herrera C, Else L, Egan D, Dickinson L, et al. Brief Report: Pharmacokinetic/Pharmacodynamic Investigation of Single-Dose Oral Maraviroc in the Context of HIV-1 Pre-exposure Prophylaxis. J Acquir Immune Defic Syndr. 2016;73(3):252–7. Published online October 12, 2016. doi:.https://doi.org/10.1097/QAI.0000000000001108
  156. Gulick RM, Wilkin TJ, Chen YQ, Landovitz RJ, Amico KR, Young AM, et al. Phase 2 Study of the Safety and Tolerability of Maraviroc-Containing Regimens to Prevent HIV Infection in Men Who Have Sex With Men (HPTN 069/ACTG A5305). J Infect Dis. 2017;215(2):238–46. Published online November 05, 2016. doi:.https://doi.org/10.1093/infdis/jiw525
  157. Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, Mefford M, et al. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science. 2004;306(5695):485–7. doi:.https://doi.org/10.1126/science.1099288
  158. Malcolm RK, Veazey RS, Geer L, Lowry D, Fetherston SM, Murphy DJ, et al. Sustained release of the CCR5 inhibitors CMPD167 and maraviroc from vaginal rings in rhesus macaques. Antimicrob Agents Chemother. 2012;56(5):2251–8. doi:.https://doi.org/10.1128/AAC.05810-11
  159. Malcolm RK, Forbes CJ, Geer L, Veazey RS, Goldman L, Klasse PJ, et al. Pharmacokinetics and efficacy of a vaginally administered maraviroc gel in rhesus macaques. J Antimicrob Chemother. 2013;68(3):678–83. doi:.https://doi.org/10.1093/jac/dks422
  160. Dezzutti CS, Yandura S, Wang L, Moncla B, Teeple EA, Devlin B, et al. Pharmacodynamic Activity of Dapivirine and Maraviroc Single Entity and Combination Topical Gels for HIV-1 Prevention. Pharm Res. 2015;32(11):3768–81. doi:.https://doi.org/10.1007/s11095-015-1738-7
  161. Fetherston SM, Boyd P, McCoy CF, McBride MC, Edwards KL, Ampofo S, et al. A silicone elastomer vaginal ring for HIV prevention containing two microbicides with different mechanisms of action. Eur J Pharm Sci. 2013;48(3):406–15. Published online December 26, 2012. doi:.https://doi.org/10.1016/j.ejps.2012.12.002
  162. Chen BA, Panther L, Marzinke MA, Hendrix CW, Hoesley CJ, van der Straten A, et al. Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics of Dapivirine and Maraviroc Vaginal Rings: A Double-Blind Randomized Trial. J Acquir Immune Defic Syndr. 2015;70(3):242–9. doi:.https://doi.org/10.1097/QAI.0000000000000702
  163. Moore JP. Topical microbicides become topical. N Engl J Med. 2005;352(3):298–300. Published online January 22, 2005. doi:.https://doi.org/10.1056/NEJMcibr043727
  164. Hartley O, Dorgham K, Perez-Bercoff D, Cerini F, Heimann A, Gaertner H, et al. Human immunodeficiency virus type 1 entry inhibitors selected on living cells from a library of phage chemokines. J Virol. 2003;77(12):6637–44. doi:.https://doi.org/10.1128/JVI.77.12.6637-6644.2003
  165. Dorgham K, Cerini F, Gaertner H, Melotti A, Rossitto-Borlat I, Gorochov G, et al. Generating Chemokine Analogs with Enhanced Pharmacological Properties Using Phage Display. Methods Enzymol. 2016;570:47–72. doi:.https://doi.org/10.1016/bs.mie.2015.09.014
  166. Gaertner H, Cerini F, Escola JM, Kuenzi G, Melotti A, Offord R, et al. Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci USA. 2008;105(46):17706–11. doi:.https://doi.org/10.1073/pnas.0805098105
  167. Cerini F, Gaertner H, Madden K, Tolstorukov I, Brown S, Laukens B, et al. A scalable low-cost cGMP process for clinical grade production of the HIV inhibitor 5P12-RANTES in Pichia pastoris. Protein Expr Purif. 2016;119:1–10. doi:.https://doi.org/10.1016/j.pep.2015.10.011
  168. Cerini F, Offord R, McGowan I, Hartley O. Stability of 5P12-RANTES, A Candidate Rectal Microbicide, in Human Rectal Lavage. AIDS Res Hum Retroviruses. 2017;33(8):768–77. doi:.https://doi.org/10.1089/aid.2016.0199
  169. Cerini F, Landay A, Gichinga C, Lederman MM, Flyckt R, Starks D, et al. Chemokine analogues show suitable stability for development as microbicides. J Acquir Immune Defic Syndr. 2008;49(5):472–6. doi:.https://doi.org/10.1097/QAI.0b013e31818c953f
  170. Nedellec R, Coetzer M, Lederman MM, Offord RE, Hartley O, Mosier DE. Resistance to the CCR5 inhibitor 5P12-RANTES requires a difficult evolution from CCR5 to CXCR4 coreceptor use. PLoS One. 2011;6(7):e22020. doi:.https://doi.org/10.1371/journal.pone.0022020
  171. McBride JW, Dias N, Cameron D, Offord RE, Hartley O, Boyd P, et al. Pharmacokinetics of the protein microbicide 5P12-RANTES in sheep following single-dose vaginal gel administration. Antimicrob Agents Chemother. 2017;61(10):e00965-17. Published online August 09, 2017. doi:.https://doi.org/10.1128/AAC.00965-17
  172. Dezzutti C, Tirabassi D, Graebing P, Wang L, Rohan L, Ayudhya RKN, et al. Abstracts of the HIV Research for Prevention Meeting, HIVR4P, 17-20 October, 2016, Chicago, USA. AIDS Res Hum Retroviruses. 2016;32(S1):1–409. doi:.https://doi.org/10.1089/aid.2016.5000.abstracts
  173. McBride J, Boyd P, Offord R, Hartley O, Kett V, Malcolm K. Abstracts of the HIV Research for Prevention Meeting, HIVR4P, 17-20 October, 2016, Chicago, USA. AIDS Res Hum Retroviruses. 2016;32(S1):1–409. doi:.https://doi.org/10.1089/aid.2016.5000.abstracts
  174. Zhang L, Herrera C, Coburn J, Olejniczak N, Ziprin P, Kaplan DL, et al. Stabilization and sustained release of HIV inhibitors by encapsulation in silk fibroin disks. ACS Biomaterials Science & Engineering. 2017.
  175. http://www.ipmglobal.org/our-work/arvs-in-the-pipeline/maraviroc. [July 5th 2017].
  176. Fuqua JL, Wanga V, Palmer KE. Improving the large scale purification of the HIV microbicide, griffithsin. BMC Biotechnol. 2015;15(1):12. doi:.https://doi.org/10.1186/s12896-015-0120-5
  177. Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, et al. Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci USA. 2008;105(10):3727–32. doi:.https://doi.org/10.1073/pnas.0708841104
  178. Anderson DJ, Politch JA, Zeitlin L, Hiatt A, Kadasia K, Mayer KH, et al. Systemic and topical use of monoclonal antibodies to prevent the sexual transmission of HIV. AIDS. 2017;31(11):1505–17. Published online May 04, 2017. doi:.https://doi.org/10.1097/QAD.0000000000001521