Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 147 No. 4546 (2017)

Precision medicine for monogenic diabetes: from a survey to the development of a next-generation diagnostic panel

  • Sakina Kherra
  • Jean-Louis Blouin
  • Federico Santoni
  • Valerie M. Schwitzgebel
DOI
https://doi.org/10.4414/smw.2017.14535
Cite this as:
Swiss Med Wkly. 2017;147:w14535
Published
08.11.2017

Summary

Monogenic diabetes (MD) accounts for 1–2% of all diabetes cases. Because of its wide phenotypic spectrum, MD is often misdiagnosed as type 1 or type 2 diabetes. While clinical and biochemical parameters can suggest MD, a definitive diagnosis requires genetic analysis. We conducted a survey among clinicians specialising in diabetes to document the cases with MD. Of 74 clinically suspected MD patients, 46% had undergone genetic analysis, which was mostly conducted using Sanger’s classical sequencing method. The most common recorded mutations were located in the GCK gene, followed by the mitochondrial genome (m.3243A>G mutation) and the HNF1B and HNF1A genes. The remaining 54% of patients only had a clinical diagnosis, mostly because genetic analysis was not easily accessible. Here, we designed a new diagnostic panel of 42 genes that was developed based on the survey. The panel was validated with an independent sample of nine known MD patients. Our survey confirms the need for a comprehensive analytical instrument for the diagnosis of MD, which will be met by the proposed panel. The diagnosis of MD is crucial because it dictates treatment and may improve metabolic control and reduce long-term complications as proposed by precision medicine.

References

  1. Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001;345(13):971–80. doi:.https://doi.org/10.1056/NEJMra002168
  2. Schwitzgebel VM. Many faces of monogenic diabetes. J Diabetes Investig. 2014;5(2):121–33. doi:.https://doi.org/10.1111/jdi.12197
  3. De Franco E, Flanagan SE, Houghton JA, Allen HL, Mackay DJ, Temple IK, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet. 2015;386(9997):957–63. doi:.https://doi.org/10.1016/S0140-6736(15)60098-8
  4. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–8. doi:.https://doi.org/10.1007/s00125-010-1799-4
  5. Thomas CC, Philipson LH. Update on diabetes classification. Med Clin North Am. 2015;99(1):1–16. doi:.https://doi.org/10.1016/j.mcna.2014.08.015
  6. Kaiser A, Vollenweider P, Waeber G, Marques-Vidal P. Prevalence, awareness and treatment of type 2 diabetes mellitus in Switzerland: the CoLaus study. Diabet Med. 2012;29(2):190–7. doi:.https://doi.org/10.1111/j.1464-5491.2011.03422.x
  7. Shepherd M, Shields B, Hammersley S, Hudson M, McDonald TJ, Colclough K, et al.; UNITED Team. Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. Diabetes Care. 2016;39(11):1879–88. doi:.https://doi.org/10.2337/dc16-0645
  8. Irgens HU, Molnes J, Johansson BB, Ringdal M, Skrivarhaug T, Undlien DE, et al. Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry. Diabetologia. 2013;56(7):1512–9. doi:.https://doi.org/10.1007/s00125-013-2916-y
  9. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275–81. doi:.https://doi.org/10.1016/S0140-6736(03)14571-0
  10. Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia. 2012;55(5):1265–72. doi:.https://doi.org/10.1007/s00125-011-2418-8
  11. Schwitzgebel VM, Mamin A, Brun T, Ritz-Laser B, Zaiko M, Maret A, et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab. 2003;88(9):4398–406. doi:.https://doi.org/10.1210/jc.2003-030046
  12. Stekelenburg CM, Schwitzgebel VM. Genetic Defects of the β-Cell That Cause Diabetes. Endocr Dev. 2016;31:179–202. doi:.https://doi.org/10.1159/000439417
  13. Weedon MN, Cebola I, Patch AM, Flanagan SE, De Franco E, Caswell R, et al.; International Pancreatic Agenesis Consortium. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014;46(1):61–4. doi:.https://doi.org/10.1038/ng.2826
  14. Carmody D, Park SY, Ye H, Perrone ME, Alkorta-Aranburu G, Highland HM, et al. Continued lessons from the INS gene: an intronic mutation causing diabetes through a novel mechanism. J Med Genet. 2015;52(9):612–6. doi:.https://doi.org/10.1136/jmedgenet-2015-103220
  15. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. doi:.https://doi.org/10.1038/gim.2015.30
  16. Szopa M, Ludwig-Gałęzowska A, Radkowski P, Skupień J, Zapała B, Płatek T, et al. Genetic testing for monogenic diabetes using targeted next-generation sequencing in patients with maturity-onset diabetes of the young. Pol Arch Med Wewn. 2015;125(11):845–51. doi:.https://doi.org/10.20452/pamw.3164
  17. Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia. 2013;56(9):1958–63. doi:.https://doi.org/10.1007/s00125-013-2962-5
  18. Alkorta-Aranburu G, Carmody D, Cheng YW, Nelakuditi V, Ma L, Dickens JT, et al. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab. 2014;113(4):315–20. doi:.https://doi.org/10.1016/j.ymgme.2014.09.007
  19. Bonnefond A, Durand E, Sand O, De Graeve F, Gallina S, Busiah K, et al. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS One. 2010;5(10):e13630. doi:.https://doi.org/10.1371/journal.pone.0013630
  20. Bonnefond A, Philippe J, Durand E, Muller J, Saeed S, Arslan M, et al. Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing. Diabetes Care. 2014;37(2):460–7. doi:.https://doi.org/10.2337/dc13-0698
  21. Johansson BB, Irgens HU, Molnes J, Sztromwasser P, Aukrust I, Juliusson PB, et al. Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia. 2017;60(4):625–35.
  22. Greeley SAW, John PM, Winn AN, Ornelas J, Lipton RB, Philipson LH, et al. The cost-effectiveness of personalized genetic medicine: the case of genetic testing in neonatal diabetes. Diabetes Care. 2011;34(3):622–7. doi:.https://doi.org/10.2337/dc10-1616
  23. Naylor RN, John PM, Winn AN, Carmody D, Greeley SA, Philipson LH, et al. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications. Diabetes Care. 2014;37(1):202–9. doi:.https://doi.org/10.2337/dc13-0410
  24. Schnyder S, Mullis PE, Ellard S, Hattersley AT, Flück CE. Genetic testing for glucokinase mutations in clinically selected patients with MODY: a worthwhile investment. Swiss Med Wkly. 2005;135(23-24):352–6.
  25. Peters JL, Anderson R, Hyde C. Development of an economic evaluation of diagnostic strategies: the case of monogenic diabetes. BMJ Open. 2013;3(5):e002905–10. doi:.https://doi.org/10.1136/bmjopen-2013-002905
  26. Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia. 2017;60(5):769-777.
  27. Edghill EL, Stals K, Oram RA, Shepherd MH. HNF1B deletions in patients with young‐onset diabetes but no known renal disease. Diabet Med. 2013;30(1):114-7.
  28. Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA. 2014;311(3):279–86. doi:.https://doi.org/10.1001/jama.2013.283980
  29. Becker M, Galler A, Raile K. Meglitinide analogues in adolescent patients with HNF1A-MODY (MODY 3). Pediatrics. 2014;133(3):e775–9. doi:.https://doi.org/10.1542/peds.2012-2537
  30. Besser REJ, Shields BM, Hammersley SE, Colclough K, McDonald TJ, Gray Z, et al. Home urine C-peptide creatinine ratio (UCPCR) testing can identify type 2 and MODY in pediatric diabetes. Pediatr Diabetes. 2013;14(3):181–8.
  31. Ellard S, Bellanné-Chantelot C, Hattersley AT ; European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia. 2008;51(4):546–53. doi:.https://doi.org/10.1007/s00125-008-0942-y
  32. Berger B, Stenström G, Sundkvist G ; B. Berger, G. Stenström, G. Sundkvi. Random C-peptide in the classification of diabetes. Scand J Clin Lab Invest. 2000;60(8):687–93. doi:.https://doi.org/10.1080/00365510050216411
  33. Rubio-Cabezas O, Hattersley AT, Njølstad PR, Mlynarski W, Ellard S, White N, et al.; International Society for Pediatric and Adolescent Diabetes. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2014;15(S20, Suppl 20):47–64. doi:.https://doi.org/10.1111/pedi.12192
  34. Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ, et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care. 2012;35(6):1206–12. doi:.https://doi.org/10.2337/dc11-1243
  35. Kropff J, Selwood MP, McCarthy MI, Farmer AJ, Owen KR. Prevalence of monogenic diabetes in young adults: a community-based, cross-sectional study in Oxfordshire, UK. Diabetologia. 2011;54(5):1261–3. doi:.https://doi.org/10.1007/s00125-011-2090-z
  36. Gandica RG, Chung WK, Deng L, Goland R, Gallagher MP. Identifying monogenic diabetes in a pediatric cohort with presumed type 1 diabetes. Pediatr Diabetes. 2015;16(3):227–33. doi:.https://doi.org/10.1111/pedi.12150
  37. Shields B, Colclough K. Towards a systematic nationwide screening strategy for MODY. Diabetologia. 2017;60(4):609–12. doi:.https://doi.org/10.1007/s00125-017-4213-7