Review article: Biomedical intelligence
Vol. 147 No. 3738 (2017)
New treatment for non-Hodgkin B-cell lymphomas with a special focus on the impact of junctional adhesion molecules
- Beat A. Imhof
- Thomas Matthes
-
Cite this as:
-
Swiss Med Wkly. 2017;147:w14487
-
Published
-
12.09.2017
Summary
Current therapeutic modalities used for B-cell lymphoma include chemotherapy, immunotherapy, and radiation therapy. Chemotherapy together with anti-CD20 monoclonal antibodies forms the cornerstone of therapy and has a curative, as well as a palliative, role in this disease. New treatment modalities targeting specific molecules on the surface of lymphoma cells or intracellular pathways regulating apoptosis, proliferation and cell division are intensively investigated. One such target is JAM-C, a molecule implicated in cell adhesion and in B cell migration and whose inhibition blocks B cells from reaching their supportive microenvironments in lymphoid organs. Hopefully this and other strategies will help to improve survival of B cell lymphoma patients in the future.
References
- Felicitas Hitz VA, Matthias Lorez, and the NICER Working Group. Survival Trends for non- Hodgkin lymphoma patients in Switzerland. Schweizer Krebsbulletin. 2015;1:61–6.
- Plosker GL, Figgitt DP. Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs. 2003;63(8):803–43.https://doi.org/10.2165/00003495-200363080-00005
- Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.https://doi.org/10.1056/NEJMoa011795
- Raderer M, Kiesewetter B, Ferreri AJ. Clinicopathologic characteristics and treatment of marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). CA Cancer J Clin. 2016;66(2):153–71.https://doi.org/10.3322/caac.21330
- Foster LH, Portell CA. The role of infectious agents, antibiotics, and antiviral therapy in the treatment of extranodal marginal zone lymphoma and other low-grade lymphomas. Curr Treat Options Oncol. 2015;16(6):28.https://doi.org/10.1007/s11864-015-0344-6
- Annibali O, Sabatino F, Mantelli F, Olimpieri OM, Bonini S, Avvisati G. Review article: Mucosa-associated lymphoid tissue (MALT)-type lymphoma of ocular adnexa. Biology and treatment. Crit Rev Oncol Hematol. 2016;100:37–45.https://doi.org/10.1016/j.critrevonc.2016.01.009
- Ferreri AJ, Govi S, Pasini E, Mappa S, Bertoni F, Zaja F, et al. Chlamydophila psittaci eradication with doxycycline as first-line targeted therapy for ocular adnexae lymphoma: final results of an international phase II trial. J Clin Oncol. 2012;30(24):2988–94.https://doi.org/10.1200/JCO.2011.41.4466
- Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6(5 Pt 1):859–66.https://doi.org/10.1111/j.1600-6143.2006.01288.x
- Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12(10):2031–42.https://doi.org/10.1158/1535-7163.MCT-12-1182
- Grosicki S. Ofatumumab for the treatment of chronic lymphocytic leukemia. Expert Rev Hematol. 2015;8(3):265–72.https://doi.org/10.1586/17474086.2015.1037736
- Al-Sawaf O, Fischer K, Engelke A, Pflug N, Hallek M, Goede V. Obinutuzumab in chronic lymphocytic leukemia: design, development and place in therapy. Drug Des Devel Ther. 2017;11:295–304.https://doi.org/10.2147/DDDT.S104869
- Marcus RE, Davies DA, Ando K, Klapper W, Opat S, Owen CJ, et al. Obinutuzumab-Based Induction and Maintenance Prolongs Progression-Free Survival (PFS) in Patients with Previously Untreated Follicular Lymphoma: Primary Results of the Randomized Phase 3 GALLIUM Study. Blood. 2017;128:6.
- Micallef IN, Maurer MJ, Wiseman GA, Nikcevich DA, Kurtin PJ, Cannon MW, et al. Epratuzumab with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. Blood. 2011;118(15):4053–61.https://doi.org/10.1182/blood-2011-02-336990
- Onuora S. Systemic lupus erythematosus: Epratuzumab not effective in phase III trials. Nat Rev Rheumatol. 2016;12(11):622. doi:.https://doi.org/10.1038/nrrheum.2016.165
- Repetto-Llamazares AH, Larsen RH, Patzke S, Fleten KG, Didierlaurent D, Pichard A, et al. Targeted Cancer Therapy with a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma. PLoS One. 2015;10(6):e0128816.https://doi.org/10.1371/journal.pone.0128816
- Pereira DS, Guevara CI, Jin L, Mbong N, Verlinsky A, Hsu SJ, et al. AGS67E, an Anti-CD37 Monomethyl Auristatin E Antibody-Drug Conjugate as a Potential Therapeutic for B/T-Cell Malignancies and AML: A New Role for CD37 in AML. Mol Cancer Ther. 2015;14(7):1650–60.https://doi.org/10.1158/1535-7163.MCT-15-0067
- Vey N, Delaunay J, Martinelli G, Fiedler W, Raffoux E, Prebet T, et al. Phase I clinical study of RG7356, an anti-CD44 humanized antibody, in patients with acute myeloid leukemia. Oncotarget. 2016;7(22):32532–42.https://doi.org/10.18632/oncotarget.8687
- Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142(5):699–713.https://doi.org/10.1016/j.cell.2010.07.044
- Piccione EC, Juarez S, Liu J, Tseng S, Ryan CE, Narayanan C, et al. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs. 2015;7(5):946–56.https://doi.org/10.1080/19420862.2015.1062192
- Ferlin WG, Chauchet X, Buatois V, Salgado-Pires S, Shang L, Dheilly E, et al. A CD47xCD19 bispecific antibody that remodels the tumor microenvironment for improved killing and provokes a memory immune response to cancer B cells. Blood. 2016;128:44.
- Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6.https://doi.org/10.1200/JCO.2011.38.0402
- Scott LJ. Brentuximab Vedotin: A Review in CD30-Positive Hodgkin Lymphoma. Drugs. 2017;77(4):435–45.https://doi.org/10.1007/s40265-017-0705-5
- Kreitman RJ, Stetler-Stevenson M, Margulies I, Noel P, Fitzgerald DJ, Wilson WH, et al. Phase II trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J Clin Oncol. 2009;27(18):2983–90.https://doi.org/10.1200/JCO.2008.20.2630
- Jain P, Polliack A, Ravandi F. Novel therapeutic options for relapsed hairy cell leukemia. Leuk Lymphoma. 2015;56(8):2264–72.https://doi.org/10.3109/10428194.2014.1001988
- Wick W, Hertenstein A, Platten M. Neurological sequelae of cancer immunotherapies and targeted therapies. Lancet Oncol. 2016;17(12):e529–41.https://doi.org/10.1016/S1470-2045(16)30571-X
- Riches JC, Gribben JG. Mechanistic and Clinical Aspects of Lenalidomide Treatment for Chronic Lymphocytic Leukemia. Curr Cancer Drug Targets. 2016;16(8):689–700.https://doi.org/10.2174/1568009616666160408145741
- Maffei R, Fiorcari S, Bulgarelli J, Rizzotto L, Martinelli S, Rigolin GM, et al. Endothelium-mediated survival of leukemic cells and angiogenesis-related factors are affected by lenalidomide treatment in chronic lymphocytic leukemia. Exp Hematol. 2014;42(2):126–36.e1.https://doi.org/10.1016/j.exphem.2013.10.007
- Arora M, Gowda S, Tuscano J. A comprehensive review of lenalidomide in B-cell non-Hodgkin lymphoma. Ther Adv Hematol. 2016;7(4):209–21.https://doi.org/10.1177/2040620716652861
- Arkwright R, Pham TM, Zonder JA, Dou QP. The preclinical discovery and development of bortezomib for the treatment of mantle cell lymphoma. Expert Opin Drug Discov. 2017;12(2):225–35.https://doi.org/10.1080/17460441.2017.1268596
- Gu JJ, Kaufman GP, Mavis C, Czuczman MS, Hernandez-Ilizaliturri FJ. Mitotic catastrophe and cell cycle arrest are alternative cell death pathways executed by bortezomib in rituximab resistant B-cell lymphoma cells. Oncotarget. 2017;8(8):12741–53. doi:.https://doi.org/10.18632/oncotarget.14405
- Vallumsetla N, Paludo J, Kapoor P. Bortezomib in mantle cell lymphoma: comparative therapeutic outcomes. Ther Clin Risk Manag. 2015;11:1663–74. doi:.https://doi.org/10.2147/TCRM.S72943
- Robak T, Huang H, Jin J, Zhu J, Liu T, Samoilova O, et al.; LYM-3002 Investigators. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. 2015;372(10):944–53.https://doi.org/10.1056/NEJMoa1412096
- Olzscha H, Sheikh S, La Thangue NB. Deacetylation of chromatin and gene expression regulation: a new target for epigenetic therapy. Crit Rev Oncog. 2015;20(1-2):1–17.https://doi.org/10.1615/CritRevOncog.2014012463
- Broccoli A, Zinzani PL. Peripheral T-cell lymphoma, not otherwise specified. Blood. 2017;129(9):1103–12.https://doi.org/10.1182/blood-2016-08-692566
- Holkova B, Yazbeck V, Kmieciak M, Bose P, Ma S, Kimball A, et al. A phase 1 study of bortezomib and romidepsin in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma, indolent B-cell lymphoma, peripheral T-cell lymphoma, or cutaneous T-cell lymphoma. Leuk Lymphoma. 2017;58(6):1349–57.https://doi.org/10.1080/10428194.2016.1276287
- Roskoski R, Jr. Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms. Pharmacol Res. 2016;113(Pt A):395–408.https://doi.org/10.1016/j.phrs.2016.09.011
- Deeks ED. Ibrutinib: A Review in Chronic Lymphocytic Leukaemia. Drugs. 2017;77(2):225–36.https://doi.org/10.1007/s40265-017-0695-3
- Gertz MA. Waldenström macroglobulinemia: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017;92(2):209–17.https://doi.org/10.1002/ajh.24557
- Patel V, Balakrishnan K, Bibikova E, Ayres M, Keating MJ, Wierda WG, et al. Comparison of Acalabrutinib, A Selective Bruton Tyrosine Kinase Inhibitor, with Ibrutinib in Chronic Lymphocytic Leukemia Cells. Clin Cancer Res. 2017;23(14):3734–43.https://doi.org/10.1158/1078-0432.CCR-16-1446
- Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(4):323–32.https://doi.org/10.1056/NEJMoa1509981
- Barrientos JC. Idelalisib for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma. Future Oncol. 2016;12(18):2077–94.https://doi.org/10.2217/fon-2016-0003
- Barrientos JC. Sequencing of chronic lymphocytic leukemia therapies. Hematology (Am Soc Hematol Educ Program). 2016;2016(1):128–36.https://doi.org/10.1182/asheducation-2016.1.128
- Nair KS, Cheson B. The role of idelalisib in the treatment of relapsed and refractory chronic lymphocytic leukemia. Ther Adv Hematol. 2016;7(2):69–84.https://doi.org/10.1177/2040620715625966
- Calimeri T, Ferreri AJM. m-TOR inhibitors and their potential role in haematological malignancies. Br J Haematol. 2017;177(5):684–702.https://doi.org/10.1111/bjh.14529
- Lampson BL, Davids MS. The Development and Current Use of BCL-2 Inhibitors for the Treatment of Chronic Lymphocytic Leukemia. Curr Hematol Malig Rep. 2017;12(1):11–9.https://doi.org/10.1007/s11899-017-0359-0
- Roberts AW, Stilgenbauer S, Seymour JF, Huang DCS. Venetoclax in patients with previously treated chronic lymphocytic leukemia. Clin Cancer Res. 2017;23(16):4527–33.https://doi.org/10.1158/1078-0432.CCR-16-0955
- Galanina N, Kline J, Bishop MR. Emerging role of checkpoint blockade therapy in lymphoma. Ther Adv Hematol. 2017;8(2):81–90.https://doi.org/10.1177/2040620716673787
- Hude I, Sasse S, Engert A, Bröckelmann PJ. The emerging role of immune checkpoint inhibition in malignant lymphoma. Haematologica. 2017;102(1):30–42.https://doi.org/10.3324/haematol.2016.150656
- Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.https://doi.org/10.1056/NEJMoa1411087
- Kuruvilla J. The role of autologous and allogeneic stem cell transplantation in the management of indolent B-cell lymphoma. Blood. 2016;127(17):2093–100.https://doi.org/10.1182/blood-2015-11-624320
- Stiff P. What is the role of autologous transplant for lymphoma in the current era? Hematology (Am Soc Hematol Educ Program). 2015;2015(1):74–81.https://doi.org/10.1182/asheducation-2015.1.74
- Merryman RW, Kim HT, Zinzani PL, Carlo-Stella C, Ansell SM, Perales MA, et al. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood. 2017;129(10):1380–8.https://doi.org/10.1182/blood-2016-09-738385
- Hong S, Le-Rademacher J, Artz A, McCarthy PL, Logan BR, Pasquini MC. Comparison of non-myeloablative conditioning regimens for lymphoproliferative disorders. Bone Marrow Transplant. 2015;50(3):367–74.https://doi.org/10.1038/bmt.2014.269
- Allegra A, Russo S, Gerace D, Calabrò L, Maisano V, Innao V, et al. Vaccination strategies in lymphoproliferative disorders: Failures and successes. Leuk Res. 2015;39(10):1006–19.https://doi.org/10.1016/j.leukres.2015.08.001
- Iribarren K, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, et al. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. OncoImmunology. 2015;5(3):e1088631.https://doi.org/10.1080/2162402X.2015.1088631
- Lee ST, Jiang YF, Park KU, Woo AF, Neelapu SS. BiovaxID: a personalized therapeutic cancer vaccine for non-Hodgkin’s lymphoma. Expert Opin Biol Ther. 2007;7(1):113–22.https://doi.org/10.1517/14712598.7.1.113
- Brody J, Levy R. Lymphoma immunotherapy: vaccines, adoptive cell transfer and immunotransplant. Immunotherapy. 2009;1(5):809–24.https://doi.org/10.2217/imt.09.50
- Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9.https://doi.org/10.1200/JCO.2014.56.2025
- Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma. Mol Ther. 2017;25(1):285–95.https://doi.org/10.1016/j.ymthe.2016.10.020
- Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10(1):53.https://doi.org/10.1186/s13045-017-0423-1
- Crassini K, Shen Y, Mulligan S, Giles Best O. Modeling the chronic lymphocytic leukemia microenvironment in vitro. Leuk Lymphoma. 2017;58(2):266–79.https://doi.org/10.1080/10428194.2016.1204654
- Fowler NH, Cheah CY, Gascoyne RD, Gribben J, Neelapu SS, Ghia P, et al. Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica. 2016;101(5):531–40.https://doi.org/10.3324/haematol.2015.139493
- Luissint AC, Nusrat A, Parkos CA. JAM-related proteins in mucosal homeostasis and inflammation. Semin Immunopathol. 2014;36(2):211–26.https://doi.org/10.1007/s00281-014-0421-0
- Arrate MP, Rodriguez JM, Tran TM, Brock TA, Cunningham SA. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem. 2001;276(49):45826–32.https://doi.org/10.1074/jbc.M105972200
- Cunningham SA, Rodriguez JM, Arrate MP, Tran TM, Brock TA. JAM2 interacts with alpha4beta1. Facilitation by JAM3. J Biol Chem. 2002;277(31):27589–92.https://doi.org/10.1074/jbc.C200331200
- Liang TW, Chiu HH, Gurney A, Sidle A, Tumas DB, Schow P, et al. Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. J Immunol. 2002;168(4):1618–26.https://doi.org/10.4049/jimmunol.168.4.1618
- Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–9.https://doi.org/10.1038/ni.2062
- Bradfield PF, Scheiermann C, Nourshargh S, Ody C, Luscinskas FW, Rainger GE, et al. JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood. 2007;110(7):2545–55.https://doi.org/10.1182/blood-2007-03-078733
- Lamagna C, Hodivala-Dilke KM, Imhof BA, Aurrand-Lions M. Antibody against junctional adhesion molecule-C inhibits angiogenesis and tumor growth. Cancer Res. 2005;65(13):5703–10.https://doi.org/10.1158/0008-5472.CAN-04-4012
- Ody C, Jungblut-Ruault S, Cossali D, Barnet M, Aurrand-Lions M, Imhof BA, et al. Junctional adhesion molecule C (JAM-C) distinguishes CD27+ germinal center B lymphocytes from non-germinal center cells and constitutes a new diagnostic tool for B-cell malignancies. Leukemia. 2007;21(6):1285–93.https://doi.org/10.1038/sj.leu.2404689
- Doñate C, Ody C, McKee T, Ruault-Jungblut S, Fischer N, Ropraz P, et al. Homing of human B cells to lymphoid organs and B-cell lymphoma engraftment are controlled by cell adhesion molecule JAM-C. Cancer Res. 2013;73(2):640–51.https://doi.org/10.1158/0008-5472.CAN-12-1756
- Doñate C, Vijaya Kumar A, Imhof BA, Matthes T. Anti-JAM-C therapy eliminates tumor engraftment in a xenograft model of mantle cell lymphoma. J Leukoc Biol. 2016;100(5):843–53.https://doi.org/10.1189/jlb.1HI1114-549RR
- Karpova D, Bonig H. Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis--Lessons From Pharmacological and Genetic Models. Stem Cells. 2015;33(8):2391–9.https://doi.org/10.1002/stem.2054
- Rashidi A, Uy GL. Targeting the microenvironment in acute myeloid leukemia. Curr Hematol Malig Rep. 2015;10(2):126–31.https://doi.org/10.1007/s11899-015-0255-4
- Barbieri F, Bajetto A, Thellung S, Würth R, Florio T. Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma. Expert Opin Drug Discov. 2016;11(11):1093–109.https://doi.org/10.1080/17460441.2016.1233176
- Shaughnessy P, Uberti J, Devine S, Maziarz RT, Vose J, Micallef I, et al. Plerixafor and G-CSF for autologous stem cell mobilization in patients with NHL, Hodgkin’s lymphoma and multiple myeloma: results from the expanded access program. Bone Marrow Transplant. 2013;48(6):777–81.https://doi.org/10.1038/bmt.2012.219
- Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119(17):3917–24.https://doi.org/10.1182/blood-2011-10-383406
- Kashyap MK, Kumar D, Jones H, Amaya-Chanaga CI, Choi MY, Melo-Cardenas J, et al. Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget. 2016;7(3):2809–22.https://doi.org/10.18632/oncotarget.6465
- Herishanu Y, Gibellini F, Njuguna N, Hazan-Halevy I, Farooqui M, Bern S, et al. Activation of CD44, a receptor for extracellular matrix components, protects chronic lymphocytic leukemia cells from spontaneous and drug induced apoptosis through MCL-1. Leuk Lymphoma. 2011;52(9):1758–69.https://doi.org/10.3109/10428194.2011.569962
- Finlayson M. Modulation of CD44 Activity by A6-Peptide. Front Immunol. 2015;6:135.https://doi.org/10.3389/fimmu.2015.00135
- Lai H. S. Z., Christina Wu, Liguang Chen, Grace Liu, RongRong Wu, Fitzgerlad Lao, Jian Yu, Laura Rassenti, Michael Choi, Stephen Howell, Malcolm Finlayson, Thomas Kipps. in Proceedings of the 105th Annual Meeting of the American Association for Cancer Research Vol. 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; (2014).
- Zhang S, Lai H, Liu G, Rassenti L, Choi MY, Howell SB, et al. A6 peptide is selectively cytotoxic for chronic lymphocytic leukemia cells. Blood. 2013;122(21):5303.
- Gayko U, Fung M, Clow F, Sun S, Faust E, Price S, et al. Development of the Bruton’s tyrosine kinase inhibitor ibrutinib for B cell malignancies. Ann N Y Acad Sci. 2015;1358(1):82–94.https://doi.org/10.1111/nyas.12878
- de Gorter DJ, Beuling EA, Kersseboom R, Middendorp S, van Gils JM, Hendriks RW, et al. Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity. 2007;26(1):93–104.https://doi.org/10.1016/j.immuni.2006.11.012
- Chang BY, Francesco M, De Rooij MF, Magadala P, Steggerda SM, Huang MM, et al. Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood. 2013;122(14):2412–24.https://doi.org/10.1182/blood-2013-02-482125
- Okada T, Ngo VN, Ekland EH, Förster R, Lipp M, Littman DR, et al. Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J Exp Med. 2002;196(1):65–75.https://doi.org/10.1084/jem.20020201
- Wong S, Fulcher D. Chemokine receptor expression in B-cell lymphoproliferative disorders. Leuk Lymphoma. 2004;45(12):2491–6.https://doi.org/10.1080/10428190410001723449
- Rehm A, Mensen A, Schradi K, Gerlach K, Wittstock S, Winter S, et al. Cooperative function of CCR7 and lymphotoxin in the formation of a lymphoma-permissive niche within murine secondary lymphoid organs. Blood. 2011;118(4):1020–33.https://doi.org/10.1182/blood-2010-11-321265
- Somovilla-Crespo B, Alfonso-Pérez M, Cuesta-Mateos C, Carballo-de Dios C, Beltrán AE, Terrón F, et al. Anti-CCR7 therapy exerts a potent anti-tumor activity in a xenograft model of human mantle cell lymphoma. J Hematol Oncol. 2013;6(1):89.https://doi.org/10.1186/1756-8722-6-89