Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 146 No. 5152 (2016)

Prevalence of abnormal electrocardiograms in Swiss elite athletes detected with modern screening criteria

  • Tilman Perrin
  • Lukas Daniel Trachsel
  • Simon Schneiter
  • Andrea Menafoglio
  • Silvia Albrecht
  • Tony Pirrello
  • Prisca Eser
  • Laurent Roten
  • Boris Gojanovic
  • Matthias Wilhelm
DOI
https://doi.org/10.4414/smw.2016.14376
Cite this as:
Swiss Med Wkly. 2016;146:w14376
Published
18.12.2016

Summary

AIMS OF THE STUDY: Sudden cardiac arrest in athletes is a rare but dramatic event. The value of a routine electrocardiogram (ECG) during preparticipation screening (PPS) remains controversial, partly because of the relatively high number of false positive findings. Our study aimed to evaluate the prevalence of abnormal ECGs in consecutive Swiss elite athletes, overall and with regard to different sports classes, using modern screening criteria.

METHODS: We analysed the 12-lead resting ECGs of high-level elite athletes (age ≥14 years) recorded at the Swiss Olympic Medical Centre Magglingen between 2013 and 2016 during routine PPS. The overall prevalence of abnormal ECGs was evaluated and compared in accordance with the original and revised Seattle criteria. Sports disciplines were categorised according to their static (estimated percentage of maximal voluntary contraction, I–III) and dynamic (estimated percentage of maximal oxygen uptake, A–C) components, and the prevalence of abnormal ECGs compared between sports classes by Fisher’s exact test (with alpha set at 0.05).

RESULTS: ECGs from 287 consecutive athletes were analysed (64.1% male; 99.7% Caucasian; median age 20.4 ± 4.9 years; median weekly training volume 17.7 ± 7.1 hours). Based on original Seattle criteria, eight (2.8%) ECGs were classified as abnormal: three T-wave inversion (TWI), one Q-wave duration >40 ms, two QRS left axis deviation, two Q-wave amplitude >3 mm. The use of the revised Seattle criteria reduced the number of abnormal ECGs to four (1.4%): three TWI, one Q-wave duration >40 ms. Further cardiological work-up revealed an underlying structural heart disease in only one of these four athletes (inferolateral TWI on ECG), consisting of very localised mid-wall fibrosis suggestive of former myocarditis.

There was a significant difference in occurrence of abnormal ECGs between the different sports categories (p = 0.018). All four abnormal ECGs according to the revised Seattle criteria occurred in the high dynamic sport classes (IIC and IIIC); three out of the four were found in the high dynamic high static class (IIIC).

CONCLUSIONS: In our cohort of high-level elite athletes, the prevalence of abnormal ECGs according to modern screening criteria was very low. All athletes with an abnormal ECG performed high dynamic sports. Less than one percent of our athletes had a new relevant cardiac diagnosis.

References

  1. Halkin A, Steinvil A, Rosso R, Adler A, Rozovski U, Viskin S. Preventing sudden death of athletes with electrocardiographic screening: what is the absolute benefit and how much will it cost? J Am Coll Cardiol. 2012;60(22):2271–6. doi:http://dx.doi.org/10.1016/j.jacc.2012.09.003.
  2. Harmon KG, Drezner JA, O’Connor FG, Asplund C, Finnoff JT. Should Electrocardiograms Be Part of the Preparticipation Physical Examination? PM R. 2016;8(3, Suppl):S24–35. doi:http://dx.doi.org/10.1016/j.pmrj.2016.01.001.
  3. Harmon KG, Zigman M, Drezner JA. The effectiveness of screening history, physical exam, and ECG to detect potentially lethal cardiac disorders in athletes: a systematic review/meta-analysis. J Electrocardiol. 2015;48(3):329–38. doi:http://dx.doi.org/10.1016/j.jelectrocard.2015.02.001.
  4. Bille K, Figueiras D, Schamasch P, Kappenberger L, Brenner JI, Meijboom FJ, et al. Sudden cardiac death in athletes: the Lausanne Recommendations. Eur J Cardiovasc Prev Rehabil. 2006;13(6):859–75. doi:http://dx.doi.org/10.1097/01.hjr.0000238397.50341.4a.
  5. Corrado D, Pelliccia A, Bjørnstad HH, Vanhees L, Biffi A, Borjesson M, et al.; Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology; Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Eur Heart J. 2005;26(5):516–24. doi:http://dx.doi.org/10.1093/eurheartj/ehi108.
  6. Maron BJ, Levine BD, Washington RL, Baggish AL, Kovacs RJ, Maron MS. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 2: Preparticipation Screening for Cardiovascular Disease in Competitive Athletes: A Scientific Statement From the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2356–61. doi:http://dx.doi.org/10.1016/j.jacc.2015.09.034.
  7. Villiger B, Hintermann M, Goerre S, Schmied C. Task Force “Prevention Sudden Death in Elite Sport” SGSM/SSMS 2010: The sudden cardiac death of a young athlete: Recommendations for a sensible and effective preventive exam. SGSM/SSMS. 2010:59-60.
  8. Corrado D, Pelliccia A, Heidbuchel H, Sharma S, Link M, Basso C, et al.; Section of Sports Cardiology, European Association of Cardiovascular Prevention and Rehabilitation. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010;31(2):243–59. doi:http://dx.doi.org/10.1093/eurheartj/ehp473.
  9. Drezner JA, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, et al. Electrocardiographic interpretation in athletes: the ‘Seattle criteria’. Br J Sports Med. 2013;47(3):122–4. doi:http://dx.doi.org/10.1136/bjsports-2012-092067.
  10. Sheikh N, Papadakis M, Ghani S, Zaidi A, Gati S, Adami PE, et al. Comparison of electrocardiographic criteria for the detection of cardiac abnormalities in elite black and white athletes. Circulation. 2014;129(16):1637–49. doi:http://dx.doi.org/10.1161/CIRCULATIONAHA.113.006179.
  11. Corrado D. Reading an athlete’s ECG: from ESC to Seattle and beyond. 1st International course in Sports Cardiology, St George’s University of London, UK- August 28, 2015;Assessed the 10th of May 2016 at: http://www.c-r-y.org.uk/wp-content/uploads/2015/10/Reading-the-athletes-ECG_Corrado-D.pdf.
  12. Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ, Hancock EW, et al.; American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; American College of Cardiology Foundation; Heart Rhythm Society. Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2007;49(10):1109–27. doi:http://dx.doi.org/10.1016/j.jacc.2007.01.024.
  13. Postema PG, De Jong JS, Van der Bilt IA, Wilde AA. Accurate electrocardiographic assessment of the QT interval: teach the tangent. Heart Rhythm. 2008;5(7):1015–8. doi:http://dx.doi.org/10.1016/j.hrthm.2008.03.037.
  14. Napolitano C, Bloise R, Priori SG. Long QT syndrome and short QT syndrome: how to make correct diagnosis and what about eligibility for sports activity. J Cardiovasc Med (Hagerstown). 2006;7(4):250–6. doi:http://dx.doi.org/10.2459/01.JCM.0000219317.12504.5f.
  15. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: classification of sports. J Am Coll Cardiol. 2005;45(8):1364–7. doi:http://dx.doi.org/10.1016/j.jacc.2005.02.015.
  16. Riding NR, Sheikh N, Adamuz C, Watt V, Farooq A, Whyte GP, et al. Comparison of three current sets of electrocardiographic interpretation criteria for use in screening athletes. Heart. 2015;101(5):384–90. doi:http://dx.doi.org/10.1136/heartjnl-2014-306437.
  17. Menafoglio A, Di Valentino M, Segatto JM, Siragusa P, Pezzoli R, Maggi M, et al. Costs and yield of a 15-month preparticipation cardiovascular examination with ECG in 1070 young athletes in Switzerland: implications for routine ECG screening. Br J Sports Med. 2014;48(15):1157–61. doi:http://dx.doi.org/10.1136/bjsports-2013-092929.
  18. Jacob D, Main ML, Gupta S, Gosch K, McCoy M, Magalski A. Prevalence and significance of isolated T wave inversion in 1755 consecutive American collegiate athletes. J Electrocardiol. 2015;48(3):407–14. doi:http://dx.doi.org/10.1016/j.jelectrocard.2015.03.005.
  19. Pelliccia A, Di Paolo FM, Quattrini FM, Basso C, Culasso F, Popoli G, et al. Outcomes in athletes with marked ECG repolarization abnormalities. N Engl J Med. 2008;358(2):152–61. doi:http://dx.doi.org/10.1056/NEJMoa060781.
  20. Schnell F, Riding N, O’Hanlon R, Axel Lentz P, Donal E, Kervio G, et al. Recognition and significance of pathological T-wave inversions in athletes. Circulation. 2015;131(2):165–73. doi:http://dx.doi.org/10.1161/CIRCULATIONAHA.114.011038.
  21. Wilson MG, Sharma S, Carré F, Charron P, Richard P, O’Hanlon R, et al. Significance of deep T-wave inversions in asymptomatic athletes with normal cardiovascular examinations: practical solutions for managing the diagnostic conundrum. Br J Sports Med. 2012;46(Suppl 1):i51–8. doi:http://dx.doi.org/10.1136/bjsports-2011-090838.
  22. Calò L, Sperandii F, Martino A, Guerra E, Cavarretta E, Quaranta F, et al. Echocardiographic findings in 2261 peri-pubertal athletes with or without inverted T waves at electrocardiogram. Heart. 2015;101(3):193–200. doi:http://dx.doi.org/10.1136/heartjnl-2014-306110.
  23. Papadakis M, Carre F, Kervio G, Rawlins J, Panoulas VF, Chandra N, et al. The prevalence, distribution, and clinical outcomes of electrocardiographic repolarization patterns in male athletes of African/Afro-Caribbean origin. Eur Heart J. 2011;32(18):2304–13. doi:http://dx.doi.org/10.1093/eurheartj/ehr140.
  24. Sharma S, Papadakis M. Interpreting the Athlete’s EKG: are all repolarization anomalies created equal? Circulation. 2015;131(2):128–30. doi:http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013739.
  25. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633–44. doi:http://dx.doi.org/10.1161/CIRCULATIONAHA.106.613562.
  26. Brosnan M, La Gerche A, Kalman J, Lo W, Fallon K, MacIsaac A, et al. Comparison of frequency of significant electrocardiographic abnormalities in endurance versus nonendurance athletes. Am J Cardiol. 2014;113(9):1567–73. doi:http://dx.doi.org/10.1016/j.amjcard.2014.01.438.
  27. Wasfy MM, Baggish AL. T-wave inversions in athletes: a sheep in wolf’s clothing? Heart. 2015;101(3):167–8. doi:http://dx.doi.org/10.1136/heartjnl-2014-306988.

Most read articles by the same author(s)

<< < 1 2