Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 146 No. 4546 (2016)

Additional malignancies in patients with neuroendocrine tumours: analysis of the SwissNET registry

  • Attila Kollár
  • Annika Blank
  • Aurel Perren
  • Lukas Bütikofer
  • Christoph Stettler
  • Emanuel Christ
DOI
https://doi.org/10.4414/smw.2016.14362
Cite this as:
Swiss Med Wkly. 2016;146:w14362
Published
06.11.2016

Summary

PRINCIPLES: Neuroendocrine neoplasms (NENs) are believed to be associated with an increased risk for additional malignancies (AMs). We aimed to (1) assess the occurrence of AM in NEN patients (2) investigate the characteristics and temporal relationship of NEN patients with and without AM.

METHODS: The SwissNET registry has prospectively documented patients with NEN since 2008, covering the entire area of Switzerland. Clinical characteristics, functionality, location and histology of NEN as well as survival of all consecutive patients were retrieved. The characteristics of the AM (location, histology, time point of diagnosis in relation to diagnosis of NEN) were extracted.

RESULTS: Out of 934 patients, 193 patients (21%) presented with AMs. There was no statistically significant difference with regard to location, functionality and grading (G1–G3) between the NEN patients with and without AM. AMs were diagnosed synchronously (±3 months), before (>–3 months) and after (>+3 months) diagnosis of NEN in 82 (42%), 96 (50%) and 13 (7%) patients, respectively. Location of NEN correlated with the anatomical origin of the AM. Age- and gender- corrected survival was not significantly different between NEN patients with and without AM.

CONCLUSION: The prevalence of AM in NEN is high. The comparable characteristics with regard to functionality and grading in the NEN cohorts with and without AM and the similar location of AM and NEN suggest a selection bias towards frequent imaging procedures in NEN patients with AM.

References

  1. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–59.
  2. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.
  3. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.
  4. Rindi G. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. WHO Classification of Tumours of the Digestive System 2010.
  5. Pape UF, Berndt U, Muller-Nordhorn J, Bohmig M, Roll S, Koch M, et al. Prognostic factors of long-term outcome in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2008;15(4):1083–97.
  6. Habal N, Sims C, Bilchik AJ. Gastrointestinal carcinoid tumors and second primary malignancies. J Surg Oncol. 2000;75(4):310–6.
  7. Zucker KA, Longo WE, Modlin IM, Bilchik AJ, Adrian TE. Malignant diathesis from jejunal-ileal carcinoids. Am J Gastroenterol. 1989;84(2):182–6.
  8. Perez EA, Koniaris LG, Snell SE, Gutierrez JC, Sumner WE, 3rd, Lee DJ, Hodgson NC, et al. 7201 carcinoids: increasing incidence overall and disproportionate mortality in the elderly. World J Surg. 2007;31(5):1022–30.
  9. Swiss NET registry. http://www.swissnet.net
  10. http://www.bag.admin.ch/themen/medizin/00701/00702/07558/index.html?lang=de
  11. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO Classification of Tumours of the Digestive System, vol. 3, 4 edn: WHO; 2010.
  12. Brune M, Gerdes B, Koller M, Rothmund M. Neuroendocrine tumors of the gastrointestinal tract (NETGI) and second primary malignancies – which is dominant? Dtsch Med Wochenschr. 2003;128(46):2413–7.
  13. Niederle MB, Niederle B. Diagnosis and treatment of gastroenteropancreatic neuroendocrine tumors: current data on a prospectively collected, retrospectively analyzed clinical multicenter investigation. Oncologist. 2011;16(5):602–13.
  14. Kauffmann RM, Wang L, Phillips S, Idrees K, Merchant NB, Parikh AA. Incidence of additional primary malignancies in patients with pancreatic and gastrointestinal neuroendocrine tumors. Ann Surg Oncol. 2014;21(11):3422–8.
  15. Kamp K, Damhuis RA, Feelders RA, de Herder WW. Occurrence of second primary malignancies in patients with neuroendocrine tumors of the digestive tract and pancreas. Endocr Relat Cancer. 2012;19(1):95–9.
  16. Clift AK, Drymousis P, Al-Nahhas A, Wasan H, Martin J, Holm S, Frilling A. Incidence of Second Primary Malignancies in Patients with Neuroendocrine Tumours. Neuroendocrinology. 2015;102(1-2):26–32.
  17. Krausch M, Raffel A, Anlauf M, Schott M, Lehwald N, Krieg A, et al. Secondary malignancy in patients with sporadic neuroendocrine neoplasia. Endocrine. 2013;44(2):510–6.
  18. NICER Nifcear: Prevalence of all cancer sites combined in Switzerland. Internet: www.nicer.org.
  19. Prommegger R, Ensinger C, Steiner P, Sauper T, Profanter C, Margreiter R. Neuroendocrine tumors and second primary malignancy – a relationship with clinical impact? Anticancer Res. 2004;24(2C):1049–51.