Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 146 No. 4344 (2016)

Microsurgery robots: addressing the needs of high-precision surgical interventions

  • Leonardo S. Mattos
  • Darwin G. Caldwell
  • Giorgio Peretti
  • Francesco Mora
  • Luca Guastini
  • Roberto Cingolani
DOI
https://doi.org/10.4414/smw.2016.14375
Cite this as:
Swiss Med Wkly. 2016;146:w14375
Published
23.10.2016

Abstract

Robotics has a significant potential to enhance the overall capacity and efficiency of healthcare systems. Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life. In particular, robotics can have a significant impact on microsurgery, which presents stringent requirements for superhuman precision and control of the surgical tools. Microsurgery is, in fact, expected to gain importance in a growing range of surgical specialties as novel technologies progressively enable the detection, diagnosis and treatment of diseases at earlier stages. Within such scenarios, robotic microsurgery emerges as one of the key components of future surgical interventions, and will be a vital technology for addressing major surgical challenges. Nonetheless, several issues have yet to be overcome in terms of mechatronics, perception and surgeon-robot interfaces before microsurgical robots can achieve their full potential in operating rooms. Research in this direction is progressing quickly and microsurgery robot prototypes are gradually demonstrating significant clinical benefits in challenging applications such as reconstructive plastic surgery, ophthalmology, otology and laryngology. These are reassuring results offering confidence in a brighter future for high-precision surgical interventions.

References

  1. Historical Population Data and Projections (1950–2050) [Internet]. Organisation for Economic Co-operation and Development (OECD). [cited 2016 Aug 1]. Available from https://stats.oecd.org/
  2. Canadian Institute for Health Information. National Health Expenditure Trends, 1975 to 2015. Ottawa: CIHI; 2015.
  3. Deraspe R. Canada’s Aging Population and Public Policy – The Effects on Health Care. Ottawa, Canada. Parliamentary Information and Research Service, Social Affairs Division; 2011 Oct. Publication No.: 2011-122-E.
  4. World Health Organization. Features: 10 facts on health workforce crisis [Internet]. c2008 – [cited 2016 Aug 1]. Available from: http://www.who.int/features/factfiles/health_workforce/en/
  5. Moses H, 3rd, Matheson DH, Dorsey ER, George BP, Sadoff D, Yoshimura S. The anatomy of health care in the United States. JAMA. 2013;310(18):1947–63. doi:http://dx.doi.org/10.1001/jama.2013.281425.
  6. Organisation for Economic Co-operation and Development. Health at a Glance 2009: OECD Indicators. Paris: OECD Publishing; 2009.
  7. Butter M, Rensma A, van Boxsel J, Kalisingh S, Schoone M, Leis M, et al. Robotics for Healthcare: Final Report. Brussels: DG Information Society, European Commission; 2008.
  8. Datteri E, Tamburrini G. Ethical Reflections on Health Care Robotics. In: Capurro R, Nagenborg M, editors. Ethics and Robotics. Amsterdam: IOS Press; 2009. p. 35–48.
  9. Broekens J, Heerink M, Rosendal H. Assistive Social Robots in Elderly Care: A Review. Gerontechnology (Valkenswaard). 2009;8(2):94–103. doi:http://dx.doi.org/10.4017/gt.2009.08.02.002.00.
  10. Kielstra P, Scott I. (The Economist Intelligence Unit Limited, London). Healthcare Strategies for an Ageing Society. Philips; 2009.
  11. Markets and Markets. Medical Robots Market [Internet]. c2015 – [cited 2016 Aug 1]. Available from: http://www.marketsandmarkets.com/PressReleases/medical-robotic-systems.asp
  12. Allied Market Research. World Surgical Robotics Market – Opportunities and Forecast, 2014 – 2020 [Internet]. c2016 Jan – [cited 2016 Aug 1]. Available from: https://www.alliedmarketresearch.com/surgical-robotics-market
  13. Mattos LS, Pardo D, Olivieri E, Barresi G, Ortiz J, Fichera L, et al. Microsurgery Systems. In: Eren H, Webster JG, editors. The E-Medicine, E-Heath, M-Health, Telemedicine, and Telehealth Handbook, vol. II – Telehealth and Mobile Health. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2015. p. 61–89.
  14. Vrecenak JD, Flake AW. Fetal surgical intervention: progress and perspectives. Pediatr Surg Int. 2013;29(5):407–17. doi:http://dx.doi.org/10.1007/s00383-013-3304-x.
  15. Behrendt N, Galan HL. Twin-twin transfusion and laser therapy. Curr Opin Obstet Gynecol. 2016;28(2):79–85. doi:http://dx.doi.org/10.1097/GCO.0000000000000247.
  16. Singhy SPN, Riviere CN. Physiological tremor amplitude during retinal microsurgery. In: Bioengineering Conference. Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference; 2002 April 20–21; Philadelphia, USA. IEEE; 2002. p. 171–2.
  17. Gijbels A, Vander Poorten EB, Gorissen B, Devreker A, Stalmans P, Reynaerts D. Experimental validation of a robotic comanipulation and telemanipulation system for retinal surgery. In: Biomedical Robotics and Biomechatronics. Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics; 2014 Aug 12–15; Sao Paulo, Brazil. IEEE; 2014. p. 144–50.
  18. Warren FM, Balachandran R, Fitzpatrick JM, Labadie RF. Percutaneous cochlear access using bone-mounted, customized drill guides: demonstration of concept in vitro. Otol Neurotol. 2007;28(3):325–9. doi:http://dx.doi.org/10.1097/01.mao.0000253287.86737.2e.
  19. Coulson CJ, Reid AP, Proops DW, Brett PN. ENT challenges at the small scale. Int J Med Robot. 2007;3(2):91–6. doi:http://dx.doi.org/10.1002/rcs.132.
  20. Steiner W, Ambrosch P. Endoscopic Laser Surgery of the Upper Aerodigestive Tract: With Special Emphasis on Cancer Surgery. Stuttgart: Thieme; 2000.
  21. Mattos LS, Caldwell DG, Dellepiane M, Grant E. Design and control of a robotic system for assistive laser phonomicrosurgery. In: Engineering in Medicine and Biology. Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology; 2010 Aug 31 – Sep 4; Buenos Aires, Argentina. IEEE; 2010. p. 5411–5.
  22. Olds KC, Chalasani P, Pacheco-Lopez P, Iordachita I, Akst LM, Taylor RH. Preliminary evaluation of a new microsurgical robotic system for head and neck surgery. In: Intelligent Robots and Systems. Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sept 14–18; Chicago, USA. IEEE; 2014. p. 1276–81.
  23. Hamahata A, Kubo K, Matsumoto H, Yamaki T, Sakurai H. Usefulness of stabilizer for microanastomoses of internal thoracic vessels during diep flap breast reconstruction. J Reconstr Microsurg Open. 2016;1(1):26–8. doi:http://dx.doi.org/10.1055/s-0036-1571845.
  24. Matsumura N, Hayashi N, Kamiyama H, Kubo M, Shibata T, Okamoto S, et al. Microvascular anastomosis at 30-50× magnifications (super-microvascular anastomosis) in neurosurgery. Surg Neurol Int. 2011;2(1):6. doi:http://dx.doi.org/10.4103/2152-7806.76143.
  25. Patel AP, Smith RP. Vasectomy reversal: a clinical update. Asian J Androl. 2016;18(3):365–71. doi:http://dx.doi.org/10.4103/1008-682X.175091.
  26. Parekattil SJ, Gudeloglu A. Robotic assisted andrological surgery. Asian J Androl. 2013;15(1):67–74. doi:http://dx.doi.org/10.1038/aja.2012.131.
  27. World Health Organization, National Institute on Aging (USA), National Institutes of Health (USA). Global Health and Aging. Betheseda, Maryland: NIH Publications; 2011.
  28. Yancik R. Population aging and cancer: a cross-national concern. Cancer J. 2005;11(6):437–41. doi:http://dx.doi.org/10.1097/00130404-200511000-00002.
  29. Stafford P, Cichacz Z, Woodbury NW, Johnston SA. Immunosignature system for diagnosis of cancer. Proc Natl Acad Sci USA. 2014;111(30):E3072–80. doi:http://dx.doi.org/10.1073/pnas.1409432111.
  30. American Cancer Society. Key statistics about breast cancer [Internet]. c2016 – [cited 2016 May 5]. Available from: http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-survival-by-stage/
  31. Cancer Research UK. Saving lives and averting costs? The case for earlier diagnosis just got stronger [Internet]. c2014 – [cited 2016 Aug 1]. Available from: http://scienceblog.cancerresearchuk.org/2014/09/22/saving-lives-and-averting-costs-the-case-for-earlier-diagnosis-just-got-stronger/
  32. Marcus H, Nandi D, Darzi A, Yang GZ. Surgical robotics through a keyhole: from today’s translational barriers to tomorrow’s “disappearing” robots. IEEE Trans Biomed Eng. 2013;60(3):674–81. doi:http://dx.doi.org/10.1109/TBME.2013.2243731.
  33. Rebello KJ. Applications of MEMS in surgery. Proc IEEE. 2004;92(1):43–55. doi:http://dx.doi.org/10.1109/JPROC.2003.820536.
  34. Pedrocchi A, Hoen S, Ferrigno G, Pedotti A. Perspectives on MEMS in bioengineering: a novel capacitive position microsensor [and laser surgery and drug delivery applications]. IEEE Trans Biomed Eng. 2000;47(1):8–11. doi:http://dx.doi.org/10.1109/10.817612.
  35. Bajo A, Dharamsi LM, Netterville JL, Garrett CG, Simaan N. Robotic-assisted micro-surgery of the throat: The trans-nasal approach. In: Robotics and Automation. Proceedings of the 2013 IEEE International Conference on Robotics and Automation; 2013 May 6-10; Karlsruhe, Germany. IEEE; 2013. p. 232–8.
  36. Bergeles C, Gosline AH, Vasilyev NV, Codd PJ, Del Nido PJ, Dupont PE. Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans Robot. 2015;31(1):67–84. doi:http://dx.doi.org/10.1109/TRO.2014.2378431.
  37. Hadi Sadati SM, Noh Y, Elnaz Naghibi S, Kaspar A, Nanayakkara T. Stiffness control of soft robotic manipulator for minimally invasive surgery (mis) using scale jamming. In: Intelligent Robotics and Applications. Proceedings of the 8th International Conference on Intelligent Robotics and Applications; 2015 Aug 24-27; Portsmouth, UK. Springer International Publishing; 2015. p. 141–51.
  38. Shiva A, Stilli A, Noh Y, Faragasso A, Falco ID, Gerboni G, et al. Tendon-based stiffening for a pneumatically actuated soft manipulator. IEEE Robot Autom Lett. 2016;1(2):632–7. doi:http://dx.doi.org/10.1109/LRA.2016.2523120.
  39. Charalampaki P, Igressa A, Mahvash M, Pechlivanis I, Schick B. Optimal invasive key-hole neurosurgery with a miniaturized 3D chip on the tip: Microendoscopic device. Asian J Neurosurg. 2013;8(3):125–31. doi:http://dx.doi.org/10.4103/1793-5482.121681.
  40. Gijbels A. Development and evaluation of robotic technology for safe and successful retinal vein cannulation [dissertation]. Leuven (Belgium): KU Leuven; 2015.
  41. He X, Handa J, Gehlbach P, Taylor R, Iordachita I. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery. IEEE Trans Biomed Eng. 2014;61(2):522–34. doi:http://dx.doi.org/10.1109/TBME.2013.2283501.
  42. Noh Y, Sareh S, Würdemann H, Liu H, Back J, Housden J, et al. Three-axis fiber-optic body force sensor for flexible manipulators. IEEE Sens J. 2016;16(6):1641–51. doi:http://dx.doi.org/10.1109/JSEN.2015.2488099.
  43. Barbalata C, Mattos LS. Laryngeal tumor detection and classification in endoscopic video. IEEE J Biomed Health Inform. 2016;20(1):322–32. doi:http://dx.doi.org/10.1109/JBHI.2014.2374975.
  44. Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation – a new cutting edge. Nat Rev Cancer. 2013;13(9):653–62. doi:http://dx.doi.org/10.1038/nrc3566.
  45. Žargi M, Fajdiga I, Šmid L. Autofluorescence imaging in the diagnosis of laryngeal cancer. Eur Arch Otorhinolaryngol. 2000;257(1):17–23. doi:http://dx.doi.org/10.1007/PL00007506.
  46. Yu H, Shen JH, Shah RJ, Simaan N, Joos KM. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps. Biomed Opt Express. 2015;6(2):457–72. doi:http://dx.doi.org/10.1364/BOE.6.000457.
  47. Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med. 2013;5(194):194ra93. doi:http://dx.doi.org/10.1126/scitranslmed.3005623.
  48. Mattos LS, Guastini L, Mora F, Caldwell DG, Peretti G. Robot-assisted system for free-beam transoral laser microsurgery. In: Medical and Biological Engineering and Computing. Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing; 2016 Mar 31 – Apr 2; Paphos, Cyprus. Springer International Publishing; 2016. p. 714–9.
  49. He X, Roppenecker D, Gierlach D, Balicki M, Olds K, Gehlbach P, et al. Toward clinically applicable steady-hand eye robot for vitreoretinal surgery. In: Proceedings of the International Mechanical Engineering Congress and Exposition, vol. 2: Biomedical and Biotechnology; 2012 Nov 9-15; Houston, USA. ASME; 2012. p. 145–53.
  50. Cau R. Design and realization of a master-slave system for reconstructive microsurgery [dissertation]. Eindhoven, (Netherlands): Technische Universiteit Eindhoven; 2014.
  51. Deshpande N, Ortiz J, Caldwell DG, Mattos LS. Enhanced computer-assisted laser microsurgeries with a virtual microscope based surgical system. In: Robotics and Automation. Proceedings of the 2014 IEEE International Conference on Robotics and Automation; 2014 May 31 – June 7; Hong Kong, China. IEEE; 2014. p. 4194–9.
  52. Intuitive Surgical Inc. da Vinci Surgical System [Internet]. c2016 – [cited 2016 Aug 3]. Available from: http://www.intuitivesurgical.com/products/davinci_surgical_system/
  53. Sridhar AN, Hughes-Hallett A, Mayer EK, Pratt PJ, Edwards PJ, Yang GZ, et al. Image-guided robotic interventions for prostate cancer. Nat Rev Urol. 2013;10(8):452–62. doi:http://dx.doi.org/10.1038/nrurol.2013.129.
  54. Reaungamornrat S, Liu WP, Wang AS, Otake Y, Nithiananthan S, Uneri A, et al. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery. Phys Med Biol. 2013;58(14):4951–79. doi:http://dx.doi.org/10.1088/0031-9155/58/14/4951.
  55. Schoob A, Kundrat D, Lekon S, Kahrs LA, Ortmaier T. Color-encoded distance for interactive focus positioning in laser microsurgery. Opt Lasers Eng. 2016;83:71–9. doi:http://dx.doi.org/10.1016/j.optlaseng.2016.03.002.
  56. Mattos LS, Caldwell DG. Safe teleoperation based on flexible intraoperative planning for robot-assisted laser microsurgery. In: Medicine and Biology. Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2012 Aug 28 – Sept 1; San Diego, USA. IEEE; 2012. p. 174–8.
  57. Bowyer SA, Rodriguez y Baena F. Dissipative control for physical human-robot interaction. IEEE Trans Robot. 2015;31(6):1281–93. doi:http://dx.doi.org/10.1109/TRO.2015.2477956.
  58. Bowyer SA, Rodriguez Y Baena F. Deformation invariant bounding spheres for dynamic active constraints in surgery. Proc Inst Mech Eng H. 2014;228(4):350–61. doi:http://dx.doi.org/10.1177/0954411914527440.
  59. Meli L, Pacchierotti C, Prattichizzo D. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction. IEEE Trans Biomed Eng. 2014;61(4):1318–27. doi:http://dx.doi.org/10.1109/TBME.2014.2303052.
  60. Fichera L, Pacchierotti C, Olivieri E, Prattichizzo D, Mattos LS. Kinesthetic and vibrotactile haptic feedback improves the performance of laser microsurgery. In: Proceedings of the IEEE Haptics Symposium; 2016 April 8-11; Philadelphia, USA. IEEE; 2016. p. 59-64.
  61. Stanberry B. Telemedicine: barriers and opportunities in the 21st century. J Intern Med. 2000;247(6):615–28. doi:http://dx.doi.org/10.1046/j.1365-2796.2000.00699.x.
  62. Liverneaux P, Berner S, Bednar M, Parekattil S, Mantovani G, Selber J, eds. Telemicrosurgery – Robot Assisted Microsurgery. Paris: Springer-Verlag France; 2013.
  63. Maclachlan RA, Becker BC, Tabarés JC, Podnar GW, Lobes LA, Jr, Riviere CN. Micron: An actively stabilized handheld tool for microsurgery. IEEE Trans Robot. 2012;28(1):195–212. doi:http://dx.doi.org/10.1109/TRO.2011.2169634.
  64. Abedloo E, Gholami S, Taghirad HD. Eye-rhas manipulator: From kinematics to trajectory control. In: Robotics and Mechatronics. Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics; 2015 Oct 7-9; Tehran, Iran. IEEE; 2015. p. 61–6.
  65. Brett PN, Baker DA, Reyes L, Blanshard J. An automatic technique for micro-drilling a stapedotomy in the flexible stapes footplate. Proc Inst Mech Eng H. 1995;209(4):255–62. doi:http://dx.doi.org/10.1243/PIME_PROC_1995_209_352_02.
  66. Salzmann J, Zheng G, Gerber N, Stieger C, Arnold A, Rohrer U, et al. Development of a miniature robot for hearing aid implantation. In: Intelligent Robots and Systems. Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2009 Oct 10-15; St. Louis, USA. IEEE; 2009. p. 2149–54.
  67. Dillon NP, Balachandran R, Fitzpatrick JM, Siebold MA, Labadie RF, Wanna GB, et al. A compact, bone-attached robot for mastoidectomy. J Med Device. 2015;9(3):0310031–7. doi:http://dx.doi.org/10.1115/1.4030083.
  68. Mattos LS, Deshpande N, Barresi G, Guastini L, Peretti G. A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery. Laryngoscope. 2014;124(8):1887–94. doi:http://dx.doi.org/10.1002/lary.24566.
  69. µRALP European Project Consortium. µRALP Project Summary [Internet]. c2015 – [cited 2016 Aug 1]. Available from: http://www.microralp.eu/
  70. Mattos LS, Dellepiane M, Caldwell DG. Next-generation micromanipulator for computer-assisted laser phonomicrosurgery. In: Medicine and Biology. Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011 Aug 30 – Sep 3; Boston, USA. IEEE; 2011. p. 4555–9.
  71. Mattos LS, Dagnino G, Becattini G, Dellepiane M, Caldwell DG. A virtual scalpel system for computer-assisted laser microsurgery. In: Intelligent Robots and Systems. Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2011 Sep 25-30; San Francisco, USA. IEEE; 2011. p. 1359–65.
  72. Fichera L, Pardo D, Illiano P, Ortiz J, Caldwell DG, Mattos LS. Online estimation of laser incision depth for transoral microsurgery: approach and preliminary evaluation. Int J Med Robot. 2016;12(1):53–61. doi:http://dx.doi.org/10.1002/rcs.1656.
  73. Fichera L, Pardo D, Illiano P, Caldwell DG, Mattos LS. Feed forward incision control for laser microsurgery of soft tissue. In: Robotics and Automation. Proceedings of the IEEE International Conference on Robotics and Automation; 2015 May 26-30; Seattle, USA. IEEE; 2015. p. 1235–40.
  74. µRALP European Project Consortium. The µralp project: Micro-technologies and systems for robot-assisted laser phonomicrosurgery [Internet]. c2015 – [cited 2016 Aug 1]. Available from: http://www.microralp.eu/
  75. Rabenorosoa K, Tasca B, Zerbib A, Rougeot P, Andreff N, Pengwang TE. Squipabot: A mesoscale parallel robot for a laser phonosurgery. Int J Optomechatronics. 2015;9(4):310–24. doi:http://dx.doi.org/10.1080/15599612.2015.1059534.