Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 146 No. 2930 (2016)

Current opinion: where are we in our understanding and treatment of osteoarthritis?

  • Anthony Robin Poole
DOI
https://doi.org/10.4414/smw.2016.14340
Cite this as:
Swiss Med Wkly. 2016;146:w14340
Published
17.07.2016

Summary

There has been important recent progress in our understanding of the molecular pathology of osteoarthritis (OA) and how it might be treated. New technologies have been developed and others refined to identify patients for recruitment in clinical trials who exhibit measurable progression. Combined with the ability to determine more effectively short-term efficacy of treatment, significant obstacles are being removed that have negated or led to the failure of earlier trials. The future for disease-modifying osteoarthritis drug (DMOAD) development and more effective pain control is therefore much more encouraging. But it is extremely important that these new therapeutic and clinical trial opportunities receive timely recognition and support from regulatory authorities. The importance and clearly demonstrated value of the coordination of clinical research and private/public initiatives, such as the OA Initiative and the European APPROACH project, and involvement of informed patients in research and policy decision making cannot be over emphasised.

References

  1. Cibere J, Zhang H, Thorne A, Wong H, Singer J, Kopec JA, et al. Association of clinical findings with pre-radiographic and radiographic knee osteoarthritis in a population-based study. Arthritis Care Res (Hoboken). 2010;62(12):1691–8.
  2. Poole AR, Ha N, Bourdon S, Sayre EC, Guemazi A, Cibere J. Ability of a urine assay of type II collagen cleavage by collagenases to detect early onset and progression of articular cartilage degeneration: Results from a population-based cohort study. J Rheumatol. 2016; in press.
  3. Kraus VB, Burnett B, Coindreau J, Cottrell J, Eyre D, Gendreau M, et al. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthritis Cartilage. 2011;19(5):515–42.
  4. Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, Tanzer M, et al. Sites of collagenase cleavage and denaturation of type II collagen in articular cartilage in ageing and osteoarthritis and their relationship to the distribution of the collagenases MMP-1 and MMP-13. Arthritis Rheum. 2002;46(8):2087–94.
  5. Squires G, Okouneff S, Ionescu M, Poole AR. Pathobiology of focal lesion development in aging human articular cartilage reveals molecular matrix changes characteristic of osteoarthritis. Arthritis Rheum. 2003;48(5):1261–70.
  6. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77–94.
  7. Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol. 2015;67(4):956-65.
  8. Poole AR. The normal synovial joint. In: Primer on Osteoarthritis. Osteoarthritis Research Society International. 2010; Edited by Y.Henrotin, D.Hunter and H.Kawaguchi, http://www.primer.oarsi.org/content/chapter-3-normal-synovial-joint.
  9. Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8(11):665–73..
  10. Dequeker J. Inverse relationship of interface between osteoporosis and osteoarthritis. J Rheumatol. 1997;24(4):795–8.
  11. Van der Kraan PM. Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis. Biomed Mater Eng. 2014;24(1Suppl):75–80.
  12. Aref-Eshghi E, Zhang Y, Hart D, Valdes AM, Furey A, Martin G, et al. SMAD3 is associated with the total burden of radiographic osteoarthritis: the Chingford study. PLoS One.2014;9(5): e97786.
  13. Kobayashi M, Squires G, Mousa A, Tanzer M, Zukor DJ, et al. Role of interleukin-1 and tumor necrosis factor-α in matrix degradation of human osteoarthritis cartilage. Arthritis Rheum. 2005; 52(1):128–35.
  14. Dahlberg L, Billinghurst C, Manner P, Ionescu M, Reiner A, Tanzer M, et al. Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritis cartilage and arrest with a synthetic inhibitor that spares collagenase matrix metalloproteinase-1. Arthritis Rheum. 2000;43(3):673–82.
  15. Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta. 2012;1824(1):133–45.
  16. Tchetina EV, Squires G, Poole AR. Increased type II collagen degradation and very early focal cartilage degradation is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol. 2005;32(5):876–86.
  17. Mwale F, Tchetina E, Poole AR. The assembly and remodelling of the extracellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan. J Bone Min Res. 2002;17(2):275–83.
  18. Sharif M, Whitehouse A, Sharman P, Perry M, Adams M. Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase-3. Arthritis Rheumatol. 2004;50(2):507–15.
  19. Zhang Y, Vasheghani F, Li YH, Blati M, Simeone K, Fahmi H, et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis. 2015;74(7):1432–40.
  20. Caramés B, Olmer M, Kiosses WB, Lotz MK. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheumatol. 2015;67(6):1568–76.
  21. Ribeiro M, Lopez de Figueroa P, Blanco FJ, Mendes AF, Carames B. Insulin decreases autophagy and leads to cartilage degradation. Osteoarthritis Cartilage. 2016;24(4):731–9.
  22. Greenblatt MB1, Ritter SY, Wright J, Tsang K, Hu D, Glimcher LH, Aliprantis AO. NFATc1 and NFATc2 repress spontaneous osteoarthritis. Proc Natl Acad Sci USA. 2013;110(49):19914–9.
  23. Ali SA, Al-Jazrawe M, Ma H, Whetstone H, Poon R, Farr S, et al. Hedgehog signaling regulates cholesterol homeostasis in osteoarthritic cartilage. Arthritis Rheumatol. 2016;68(1):127–37.
  24. Wu CL, Jain D, McNeill JN, Little D, Anderson JA, Huebner JL, Kraus VB, et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. Ann Rheum Dis. 2015;74(11):2076–83.
  25. Oh, H, Chun CH, Chun JS. DKK-I expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 2012;64(8):2568–78.
  26. Pan F, Tian J, Winzenberg T, Ding C, Jones G. Association between GDF5 rs143383 polymorphism and knee osteoarthritis: an updated meta-analysis based on 23,995 subjects. BMC Musculoskelet Disord. 2014;15:404.
  27. Enochson L1, Stenberg J2, Brittberg M3, Lindahl A. GDF5 reduces MMP13 expression in human chondrocytes via DKK1 mediated canonical Wnt signaling inhibition. Osteoarthritis Cartilage. 2014;22(4):566–77.
  28. Takamatsu A, Ohkawara B, Ito M, Masuda A, Sakai T, Ishiguro N, et al. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β catenin signaling. PLoS One. 2014;9(3):e92699.
  29. Mohan G, Magnitsky S, Melkus G, Subburaj K, Kazakia G, Burghardt AJ, et al. Kartogenin treatment prevented joint degeneration in a rodent model of osteoarthritis: A pilot study. J Orthop Res. 2016;19. doi: 10.1002/jor.23197. [Epub ahead of print]
  30. Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman, ML Jay GD. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci USA. 2013;110(15):5852–57.
  31. Majid SE, Kuijer R, Kowitsch A, Groth T, Schmidt TA, Sharma PK. Both hyaluronan and collagen type II keep proteoglycan 4 (lubricin) at the cartilage surface in a condition that provides low friction during boundary lubrication. Langmuir. 2014;30(48):14566–72.
  32. Chang DP, Guilak F, Jay GD, Zauscher S. Interaction of lubricin with type II collagen surfaces: adsorption, friction, and normal forces. J Biomech. 2014;47(3):659–66.
  33. Ruan MZ, Erez A, Guse K, Dawson B, Bertin T, Chen Y, et al. Proteoglycan 4 expression protects against development of osteoarthritis. Sci Transl Med. 2013;5(176):176ra34.
  34. Alquraini A, Garguilo S, D’Souza G, Zhang LX, Schmidt TA, Jay GD, et al. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther. 2015;17:353.
  35. Ludwig,TE, Hunter MM, Schmidt TA. Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure. BMC Musculoskelet Disord. 2015;16(1):386.
  36. Lawrence A, Xu X, Bible MD, Calve S, Neu CP, Panitch A. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface. Biomaterials. 2015;73:42–50.
  37. Sharma L, Chmiel JS, Almagor O, Dunlop D, Guermazi A, Bathon JM, et al. Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol. 2014;66(7):1811–9.
  38. Settle S1, Vickery L, Nemirovskiy O, Chan KK, Sit RW, Wu RW, Ngai AH. Clinical, radiological and ultrasonographic findings related to knee pain in osteoarthritis. PLoS One.2014;9(3):e92901.
  39. Ballegaard C, Riis RG, Bliddal H, Christensen R, Henriksen M, Bartels EM, et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage. 2014;22(7):933–40.
  40. Maksymowych WP, Russell AS, Chiu P, Yan A, Jones N, Clare T, et al. Targeting tumor necrosis factor alleviates signs and symptoms of inflammatory osteoarthritis of the knee. Arthritis Res Ther. 2012;14(5):R206.
  41. Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, et al. Efficacy of direct injection of Etanercept into knee joints for pain in moderate and severe osteoarthritis. Yonsei Med J. 2015;56(5):1379–83.
  42. Schaible H-G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther. 2014;16(5):470.
  43. Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, et al. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther. 2014;20;16(1):R16.
  44. Driscoll C, Chanalaris A, Knights C, Ismail H, Sacitharan PK, Gentry C, et al. Nociceptive sensitizers are regulated in damaged joint tissues, including the articular cartilage, when osteoarthritic mice display pain behaviour. Arthritis Rheumatol. 2016;68(4):857–67.
  45. Brown MT, Murphy FT, Radin DM, Davignon I, Smith MD, West CR. Tanezumab reduces osteoarthritic knee pain: Results of randomized, double blind, placebo-controlled phase III trial. J Pain. 2012;13(8):790–98.
  46. Brown MT, Murphy FT, Radin DM, Davignon I, Smith MD, West CR. Tanezumab reduces osteoarthritic hip pain: results of a randomized, double-blind, placebo-controlled phase III trial. Arthritis Rheum. 2013;65(7):1795–803.
  47. Bannwarth B, Kostine M. Targeting nerve growth factor (NGF) for pain management: what does the future hold for NGF antagonists? Drugs. 2014;74(6):619–26.
  48. Thakur M, Dawes JM, McMahon SB. Genomics of pain in OA. Osteoarthritis Cartilage. 2013;21(9):1374–82.
  49. Mogil, JS. Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nature Reviews Neuroscience, 2012;13:859–66.
  50. National Institutes of Arthritis and Muculoskeletal and Skin diseases website. Osteoarthritis Initiative. Available from: http://www.niams.nih.gov/funding/funded_research/osteoarthritis_initiative
  51. Lygature website. About the APPROACH project. Available from: http://www.lygature.org/approach
  52. Borthakur A, Shapiro E M, Beers J, Kudchodkar S, Kneeland J B, Reddy R. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI Osteoarthritis Cartilage. 2000;8(4):288–93.
  53. Fernadez-Moreno M, Soto-Hermida A, Oreiro N, Pertega S, Fernandez-Lopez C, Rego-Perez I, et al. Mitochondrial haplogroups define two phenotypes of osteoarthritis. Front Physiol. 2012;3:129.
  54. Soto-Hermida A, Fernandez_Moreno M, Oreiro N, Fernandez-Lopez C, Pertega S, Cortes-Pereira E, et al. Mitochondrial DNA (mtDNA) haplogroups influence the progression of knee osteoarthritis. Data from the Osteoarthritis Initiative. PLoS One. 2014;9(11):e112735.
  55. Soto-Hermida A, Fernandez-Moreno M, Pertaga-Diaz S, Oreiro N, Fernandez-Lopez C, Blanco FJ, et al. Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis. Rheumatol Int. 2015;35(2):337–44.
  56. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97(3):761–8.
  57. Zhang F, Fang H, Li F, Shi H, Ma L, Du M, et al. Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals. Biochim Biophys Acta. 2016;1862(4):829–36.
  58. Blanco FJ, Möller I, Romera M, Rozadilla A, Sánchez-Lázaro JA, Rodríguez A,et al. Improved prediction of knee osteoarthritis progression by genetic polymorphisms: the Arthrotest Study. Rheumatology (Oxford). 2015;54(7):1236–43.
  59. Kraus V, Collins J, Hargrove D, Losina E, Nevitt M, Katz JS, et al. Predictive validity of biochemical biomarkers in knee osteoarthritis – Data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis. 2016 [epub ahead of print]. doi: 10.1136/annrheumdis-2016-209252.
  60. Settle S, Vickery L, Nemirovskiy O, Vidmar T, Bendele A, Messing D, et al. Cartilage degradation biomarkers predict efficacy of a novel, highly selective matrix metalloproteinase 13 inhibitor in a dog model of osteoarthritis: confirmation by multivariate analysis that modulation of type II collagen and aggrecan degradation peptides parallels pathologic changes. Arthritis Rheum. 2010;62(10):3006–15.
  61. Kumm J, Tamm A, Lintrop M, Tamm A. Diagnostic and prognostic value of bone biomarkers in progressive knee osteoarthritis: a 6-year follow-up study in middle-aged subjects. Osteoarthritis Cartilage. 2013;21(6):815–22.
  62. Engstrom-Laurent A, Hallgren R. Circulating hyaluronate in rheumatoid arthritis: relationships to inflammatory activity and the effect of corticosteroid therapy. Ann Rheum Dis. 1985;44(2):83–8.
  63. Laurent TC, Laurent UBG, Fraser JRE. Serum hyaluronan as a disease marker. Ann Med. 1996;28(3):241–53.
  64. Berg S. Hyaluronan turnover in relation to infection and sepsis. J Int Med. 1997;242(1):73–7.
  65. Kaneko H, Ishijima M, Doi T, Futami I, Liu L, Sadatsuki R, et al. Reference intervals of serum hyaluronic acid corresponding to the radiographic severity of knee osteoarthritis in women. BMC Musculoskelet Disord. 2013;14:34.
  66. Sasaki E, Tsuda E, Yamamoto Y, Iwasaki K, Inoue R, Takahashi I, et al. Serum hyaluronan levels increase with the total number of osteoarthritis joints and are strongly associated with the presence of knee and finger osteoarthritis. Int Orthop. 2013;37(5):925–30.
  67. Sasaki E, Tsuda E, Yamamoto Y, Maeda S, Inoue R, Chiba D, et al. Serum hyaluronic acid concentration predicts the progression of joint space narrowing in normal knees and established knee osteoarthritis – a five-year prospective cohort study. Arthritis Res Ther. 2015;17:283.
  68. Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE. Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheumatol. 2008;58(6):1727–30.
  69. Newbould RD, Miller SR, Upadhyay N, Rao AW, Swann P, Gold GE, et al. T1-weighted sodium MRI of the articular cartilage in osteoarthritis: a cross sectional and longitudinal study. PLoS One. 2013;8(8):e73067.
  70. Nishioka H, Hirose J, Nakamura E, Oniki Y, Takada K, Yamashita Y, et al. T1ρ and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging. 2012;35(1):147–55.
  71. Matzat SJ, van Tiel J, Gold GE, Oei EH. Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg. 2013;3(3):162–74.
  72. Liebl H, Joseph G, Nevitt MC, Singh N, Heilmeier U, Karupppasamy S, et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis. 2015;74(7):1353–9.
  73. Neogi T, Bowes MA, Niu J, De Souza KM, Vincent G, Goggins J, et al. MRI-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the Osteoarthritis Initiative. Arthritis Rheum. 2013;65(8):2048–58.
  74. Teichtahl AJ, Wluka AE, Wang Y, Wijethilake PN, Strauss BJ, Proietto J, et al. Vastus medialis fat infiltration – a modifiable determinant of knee cartilage loss. Osteoarthritis Cartilage. 2015;23(12):2150–7.
  75. Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthopaedic Res. 1994;12(4):474–84.
  76. Brandt KD. Insights into the natural history of osteoarthritis and the potential for pharmacologic modification of the disease afforded by study of the cruciate-deficient dog. In: Osteoarthritis Disorders, Kuettner KE, Goldberg VM, eds, 1995. American Academy of Orthopaedic Surgeons, pp.419–26.
  77. Jones MH, Spindler KP, Fleming BC, Duryea J, Obuchowski NA, Scaramuzza EA, et al. Meniscus treatment and age associated with narrower radiographic joint space width 2–3 years after ACL reconstruction: data from the MOON onsite cohort. Osteoarthritis Cartilage. 2015;23(4):581–8.