Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 146 No. 2728 (2016)

Stroke research at the crossroads – where are we heading?

  • Stefan Roth
  • Arthur Liesz
Cite this as:
Swiss Med Wkly. 2016;146:w14329


Stroke causes 5.7 million deaths annually. This ranks stroke as the second most common cause of death and, additionally, it is a major cause of disability. Because of an ageing population, stroke incidence and costs will greatly increase in the future. This makes stroke an ongoing social and economic burden, in contrast to the only very limited therapeutic options. In the last decade vast sums were spent on translational research focused on neuroprotective strategies in the acute phase of ischaemic stroke. A plethora of candidate agents were tested in experimental models and preclinical studies, but none was proven effective in clinical trials. This gave rise to discussions about the possible reasons for this failure, ending up mainly with criticism of methodological aspects of the preclinical and clinical studies, or of the relevance of animal studies in drug development. Indeed, the question could rather be whether neuroprotection is the right target for successful stroke treatment. In this context, a paradigm change can currently be observed: the focus of experimental and translational stroke research is shifting from early neuroprotection to delayed mechanisms such as stroke-associated comorbidities, regeneration and plasticity. In this review we highlight a few recently emerging fields in translational stroke research. One such topic is the crosstalk between immunity and the injured brain as key pathomechanism in stroke. On one hand, innate and adaptive immune cells play an important role in the fate of injured brain tissue after stroke; on the other, peripheral immune alterations are critically involved in post-stroke comorbidities. Another emerging research area is the analysis of mechanisms involved in regeneration and neuronal plasticity after stroke. Here, we discuss the current understanding of basic mechanisms involved after brain injury, clinical imaging approaches and therapeutic strategies to promote regeneration in stroke patients.


  1. Strong K, Mathers C, Bonita R. Preventing stroke: saving lives around the world. Lancet Neurol. 2007;6(2):182–7. Epub 2007/01/24. doi: 10.1016/S1474-4422(07)70031-5. PubMed PMID: 17239805.
  2. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367(9524):1747–57. Epub 2006/05/30. doi: 10.1016/S0140-6736(06)68770-9. PubMed PMID: 16731270.
  3. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23. Epub 2008/05/13. doi: 10.1016/S0140-6736(08)60694-7. PubMed PMID: 18468545.
  4. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):e25–146. Epub 2007/12/19. doi: 10.1161/CIRCULATIONAHA.107.187998. PubMed PMID: 18086926.
  5. Jauch EC, Saver JL, Adams HP, Jr., Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947. Epub 2013/02/02. doi: 10.1161/STR.0b013e318284056a. PubMed PMID: 23370205.
  6. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77. Epub 2006/02/03. doi: 10.1002/ana.20741. PubMed PMID: 16453316.
  7. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, et al. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(8):1412–31. Epub 2010/05/21. doi: 10.1038/jcbfm.2010.66. PubMed PMID: 20485296; PubMed Central PMCID: PMC2949237.
  8. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245. Epub 2010/04/03. doi: 10.1371/journal.pmed.1000245. PubMed PMID: 20361020; PubMed Central PMCID: PMC2846855.
  9. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. J Gene Med. 2010;12(7):561–3. Epub 2010/07/08. doi: 10.1002/jgm.1473. PubMed PMID: 20607692.
  10. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20(4):195–203. Epub 2014/03/04. doi: 10.1016/j.molmed.2014.01.007. PubMed PMID: 24581450.
  11. Gladstone DJ, Black SE, Hakim AM, Heart, Stroke Foundation of Ontario Centre of Excellence in Stroke R. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33(8):2123–36. Epub 2002/08/03. PubMed PMID: 12154275.
  12. Savitz SI, Fisher M. Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol. 2007;61(5):396–402. Epub 2007/04/11. doi: 10.1002/ana.21127. PubMed PMID: 17420989.
  13. Grotta J. Neuroprotection is unlikely to be effective in humans using current trial designs. Stroke. 2002;33(1):306–7. Epub 2002/01/10. PubMed PMID: 11779929.
  14. Dirnagl U, Endres M. Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke. 2014;45(5):1510-8. Epub 2014/03/22. doi: 10.1161/STROKEAHA.113.004075. PubMed PMID: 24652307.
  15. Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134(Pt 3):704–20. Epub 2011/03/01. doi: 10.1093/brain/awr008. PubMed PMID: 21354973.
  16. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79(4):1431–568. Epub 1999/10/03. PubMed PMID: 10508238.
  17. Hellwig S, Heinrich A, Biber K. The brain’s best friend: microglial neurotoxicity revisited. Front Cell Neurosci. 2013;7:71. Epub 2013/06/05. doi: 10.3389/fncel.2013.00071. PubMed PMID: 23734099; PubMed Central PMCID: PMC3655268.
  18. Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011;8:174. Epub 2011/12/14. doi: 10.1186/1742-2094-8-174. PubMed PMID: 22152337; PubMed Central PMCID: PMC3251548.
  19. Perego C, Fumagalli S, De Simoni MG. Three-dimensional confocal analysis of microglia/macrophage markers of polarization in experimental brain injuryJ Vis Exp. 2013(79). Epub 2013/09/24. doi: 10.3791/50605. PubMed PMID: 24056862; PubMed Central PMCID: PMC3857388.
  20. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70. Epub 2012/08/31. doi: 10.1161/STROKEAHA.112.659656. PubMed PMID: 22933588.
  21. del Zoppo GJ. Acute anti-inflammatory approaches to ischemic stroke. Ann N Y Acad Sci. 2010;1207:143–8. Epub 2010/10/20. doi: 10.1111/j.1749-6632.2010.05761.x. PubMed PMID: 20955437; PubMed Central PMCID: PMC4552338.
  22. Famakin BM. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review. Aging Dis. 2014;5(5):307–26. Epub 2014/10/03. doi: 10.14336/AD.2014.0500307. PubMed PMID: 25276490; PubMed Central PMCID: PMC4173797.
  23. Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, et al. Combination of the Immune Modulator Fingolimod With Alteplase in Acute Ischemic Stroke: A Pilot Trial. Circulation. 2015;132(12):1104–12. doi: 10.1161/CIRCULATIONAHA.115.016371. PubMed PMID: 26202811; PubMed Central PMCID: PMC4580515.
  24. Schabitz WR, Dirnagl U. Are we ready to translate T-cell transmigration in stroke? Stroke. 2014;45(6):1610–1. Epub 2014/04/20. doi: 10.1161/STROKEAHA.114.005294. PubMed PMID: 24743434.
  25. Jacobs AH, Tavitian B, consortium IN. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab. 2012;32(7):1393–415. Epub 2012/05/03. doi: 10.1038/jcbfm.2012.53. PubMed PMID: 22549622; PubMed Central PMCID: PMC3390799.
  26. Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A. 2001;98(22):12766–71. Epub 2001/10/19. doi: 10.1073/pnas.231235598. PubMed PMID: 11606760; PubMed Central PMCID: PMC60128.
  27. Gauberti M, Montagne A, Marcos-Contreras OA, Le Behot A, Maubert E, Vivien D. Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes. Stroke. 2013;44(7):1988–96. Epub 2013/06/08. doi: 10.1161/STROKEAHA.111.000544. PubMed PMID: 23743972.
  28. Hoyte LC, Brooks KJ, Nagel S, Akhtar A, Chen R, Mardiguian S, et al. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(6):1178–87. Epub 2010/01/21. doi: 10.1038/jcbfm.2009.287. PubMed PMID: 20087364; PubMed Central PMCID: PMC2949202.
  29. Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK1195. Neurology. 2000;55(7):1052–4. Epub 2000/11/04. PubMed PMID: 11061271.
  30. Chapman KZ, Dale VQ, Denes A, Bennett G, Rothwell NJ, Allan SM, et al. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke. J Cereb Blood Flow Metab. 2009;29(11):1764–8. Epub 2009/08/06. doi: 10.1038/jcbfm.2009.113. PubMed PMID: 19654587.
  31. Gong G, Xiang L, Yuan L, Hu L, Wu W, Cai L, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PloS One. 2014;9(3):e89450. Epub 2014/03/07. doi: 10.1371/journal.pone.0089450. PubMed PMID: 24594628; PubMed Central PMCID: PMC3942385.
  32. Schulze J, Zierath D, Tanzi P, Cain K, Shibata D, Dressel A, et al. Severe stroke induces long-lasting alterations of high-mobility group box 1. Stroke. 2013;44(1):246–8. Epub 2012/12/04. doi: 10.1161/STROKEAHA.112.676072. PubMed PMID: 23204053; PubMed Central PMCID: PMC3530419.
  33. Liesz A, Dalpke A, Mracsko E, Antoine DJ, Roth S, Zhou W, et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci. 2015;35(2):583–98. Epub 2015/01/16. doi: 10.1523/JNEUROSCI.2439-14.2015. PubMed PMID: 25589753; PubMed Central PMCID: PMC4293412.
  34. Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke. 2007;38(2 Suppl):770–3. Epub 2007/01/31. doi: 10.1161/01.STR.0000251441.89665.bc. PubMed PMID: 17261736.
  35. Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36. Epub 2003/08/27. doi: 10.1084/jem.20021098. PubMed PMID: 12939340; PubMed Central PMCID: PMC2194193.
  36. Walter U, Kolbaske S, Patejdl R, Steinhagen V, Abu-Mugheisib M, Grossmann A, et al. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur J Neurol. 2013;20(1):153–9. Epub 2012/07/28. doi: 10.1111/j.1468-1331.2012.03818.x. PubMed PMID: 22834894.
  37. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nature reviews Neurology. 2012;8(7):401–10. doi: 10.1038/nrneurol.2012.98.
  38. Urra X, Obach V, Chamorro A. Stroke induced immunodepression syndrome: from bench to bedside. Curr Mol Med. 2009;9(2):195–202.
  39. Singh V, Roth S, Veltkamp R, Liesz A. HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxid Redox Signal. 2015. doi: 10.1089/ars.2015.6397. PubMed PMID: 26493086.
  40. Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63(3):272–87. Epub 2008/04/03. doi: 10.1002/ana.21393. PubMed PMID: 18383072.
  41. Patel AT, Duncan PW, Lai SM, Studenski S. The relation between impairments and functional outcomes poststroke. Arch Phys Med Rehabil. 2000;81(10):1357–63. Epub 2000/10/13. doi: 10.1053/apmr.2000.9397. PubMed PMID: 11030501.
  42. Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci. 2009;29(6):1719–34. Epub 2009/02/13. doi: 10.1523/JNEUROSCI.4249-08.2009. PubMed PMID: 19211879.
  43. Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H, et al. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol. 2008;63(2):236–46. Epub 2007/09/28. doi: 10.1002/ana.21228. PubMed PMID: 17896791.
  44. Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol. 2005;193(2):291–311. Epub 2005/05/05. doi: 10.1016/j.expneurol.2005.01.004. PubMed PMID: 15869933.
  45. Mohajerani MH, Aminoltejari K, Murphy TH. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A. 2011;108(22):E183–91. Epub 2011/05/18. doi: 10.1073/pnas.1101914108. PubMed PMID: 21576480; PubMed Central PMCID: PMC3107306.
  46. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72. Epub 2009/11/06. doi: 10.1038/nrn2735. PubMed PMID: 19888284.
  47. Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42. Epub 2006/04/25. doi: 10.1002/ana.20845. PubMed PMID: 16634041.
  48. Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–16. Epub 2014/01/25. doi: 10.1016/S1474-4422(13)70264-3. PubMed PMID: 24457190.
  49. Held JM, Gordon J, Gentile AM. Environmental influences on locomotor recovery following cortical lesions in rats. Behav Neurosci. 1985;99(4):678–90. Epub 1985/08/01. PubMed PMID: 3843734.
  50. Ohlsson AL, Johansson BB. Environment influences functional outcome of cerebral infarction in rats. Stroke. 1995;26(4):644–9. Epub 1995/04/01. PubMed PMID: 7709412.
  51. Sarkamo T, Tervaniemi M, Laitinen S, Forsblom A, Soinila S, Mikkonen M, et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain. 2008;131(Pt 3):866–76. Epub 2008/02/22. doi: 10.1093/brain/awn013. PubMed PMID: 18287122.
  52. Platz T. [Evidence-based arm rehabilitation – a systematic review of the literature.] Nervenarzt. 2003;74(10):841–9. Epub 2003/10/11. doi: 10.1007/s00115-003-1549-7. PubMed PMID: 14551687. German.
  53. Dickstein R, Hocherman S, Pillar T, Shaham R. Stroke rehabilitation. Three exercise therapy approaches. Phys Ther. 1986;66(8):1233–8. Epub 1986/08/01. PubMed PMID: 3737695.
  54. Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput. 2005;43(1):2–10. Epub 2005/03/04. PubMed PMID: 15742713.
  55. Reinkensmeyer DJ, Dewald JP, Rymer WZ. Guidance-based quantification of arm impairment following brain injury: a pilot study. IEEE Trans Rehabil Eng. 1999;7(1):1–11. Epub 1999/04/03. PubMed PMID: 10188602.
  56. Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil. 2014;11:92. Epub 2014/06/04. doi: 10.1186/1743-0003-11-92. PubMed PMID: 24890413; PubMed Central PMCID: PMC4065313.
  57. Staubli P, Nef T, Klamroth-Marganska V, Riener R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009;6:46. Epub 2009/12/19. doi: 10.1186/1743-0003-6-46. PubMed PMID: 20017939; PubMed Central PMCID: PMC2807864.
  58. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84(4):477–82. Epub 2003/04/12. doi: 10.1053/apmr.2003.50110. PubMed PMID: 12690583.
  59. Lum P, Reinkensmeyer D, Mahoney R, Rymer WZ, Burgar C. Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Top Stroke Rehabil. 2002;8(4):40–53. Epub 2003/10/03. doi: 10.1310/9KFM-KF81-P9A4-5WW0. PubMed PMID: 14523729.
  60. Feng WW, Bowden MG, Kautz S. Review of transcranial direct current stimulation in poststroke recovery. Topics Stroke Rehabil. 2013;20(1):68–77. Epub 2013/01/24. doi: 10.1310/tsr2001-68. PubMed PMID: 23340073.
  61. Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Hummel FC. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke. 2012;43(8):2185–91. Epub 2012/05/24. doi: 10.1161/STROKEAHA.111.645382. PubMed PMID: 22618381.
  62. Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke. 2010;41(2):368–74. Epub 2009/11/27. doi: 10.1161/STROKEAHA.109.568899. PubMed PMID: 19940275; PubMed Central PMCID: PMC2811754.
  63. Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011;69(1):119–29. Epub 2011/02/01. doi: 10.1002/ana.22186. PubMed PMID: 21280082; PubMed Central PMCID: PMC3200194.
  64. Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol. 2013;241:45–55. Epub 2012/12/25. doi: 10.1016/j.expneurol.2012.12.009. PubMed PMID: 23261767; PubMed Central PMCID: PMC3570752.
  65. Kraft P, Gob E, Schuhmann MK, Gobel K, Deppermann C, Thielmann I, et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke. 2013;44(11):3202–10. Epub 2013/09/14. doi: 10.1161/STROKEAHA.113.002880. PubMed PMID: 24029635.
  66. Campos F, Qin T, Castillo J, Seo JH, Arai K, Lo EH, et al. Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model. Stroke. 2013;44(2):505–11. Epub 2013/01/05. doi: 10.1161/STROKEAHA.112.679043. PubMed PMID: 23287783; PubMed Central PMCID: PMC3586809.
  67. Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014;111(51):18315–20. Epub 2014/12/10. doi: 10.1073/pnas.1416166111. PubMed PMID: 25489101; PubMed Central PMCID: PMC4280578.
  68. Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71(9):1092–101. Epub 2014/07/09. doi: 10.1001/jamaneurol.2014.1065. PubMed PMID: 25003359.
  69. Langhauser F, Kraft P, Gob E, Leinweber J, Schuhmann MK, Lorenz K, et al. Blocking of alpha4 integrin does not protect from acute ischemic stroke in mice. Stroke. 2014;45(6):1799–806. Epub 2014/04/20. doi: 10.1161/STROKEAHA.114.005000. PubMed PMID: 24743435.
  70. Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C, et al. Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Sci Transl Med. 2015;7(299):299ra121. Epub 2015/08/08. doi: 10.1126/scitranslmed.aaa9853. PubMed PMID: 26246166.
  71. Plautz EJ, Barbay S, Frost SB, Friel KM, Dancause N, Zoubina EV, et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res. 2003;25(8):801–10. Epub 2003/12/13. doi: 10.1179/016164103771953880. PubMed PMID: 14669522.
  72. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):490–9. Epub 2005/01/07. doi: 10.1093/brain/awh369. PubMed PMID: 15634731.
  73. Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology. 2005;65(3):466–8. Epub 2005/08/10. doi: 10.1212/01.wnl.0000173067.84247.36. PubMed PMID: 16087918.
  74. Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke. 2005;36(12):2681–6. Epub 2005/10/29. doi: 10.1161/01.STR.0000189658.51972.34. PubMed PMID: 16254224.
  75. Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage. 2010;50(1):233–42. Epub 2009/12/17. doi: 10.1016/j.neuroimage.2009.12.029. PubMed PMID: 20005962.
  76. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104. Epub 2006/11/02. doi: 10.1001/jama.296.17.2095. PubMed PMID: 17077374.
  77. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83. Epub 2010/04/20. doi: 10.1056/NEJMoa0911341. PubMed PMID: 20400552.