Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 145 No. 4344 (2015)

Iron deficiency in sports – definition, influence on performance and therapy

  • German Clénin
  • Mareike Cordes
  • Andreas Huber
  • Yorck Olaf Schumacher
  • Patrick Noack
  • John Scales
  • Susi Kriemler
Cite this as:
Swiss Med Wkly. 2015;145:w14196


Iron deficiency is frequent among athletes. All types of iron deficiency may affect physical performance and should be treated. The main mechanisms by which sport leads to iron deficiency are increased iron demand, elevated iron loss and blockage of iron absorption due to hepcidin bursts. As a baseline set of blood tests, haemoglobin, haematocrit, mean cellular volume, mean cellular haemoglobin and serum ferritin levels help monitor iron deficiency. In healthy male and female athletes >15 years, ferritin values <15 mcg are equivalent to empty, values from 15 to 30 mcg/l to low iron stores. Therefore a cut-off of 30 mcg/l is appropriate. For children aged from 6–12 years and younger adolescents from 12–15 years, cut-offs of 15 and 20 mcg/l, respectively, are recommended. As an exception in adult elite sports, a ferritin value of 50 mcg/l should be attained in athletes prior to altitude training, as iron demands in these situations are increased.

Treatment of iron deficiency consists of nutritional counselling, oral iron supplementation or, in specific cases, by intravenous injection. Athletes with repeatedly low ferritin values benefit from intermittent oral substitution. It is important to follow up the athletes on an individual basis, repeating the baseline blood tests listed above twice a year. A long-term daily oral iron intake or i.v. supplementation in the presence of normal or even high ferritin values does not make sense and may be harmful.


  1. Proposed nutrient and energy intakes for the European community: a report of the Scientific Committee for Food of the European community. Nutr Rev. 1993;51:209–12.
  3. Schleiffenbaum BE, et al. Unexpected high prevalence of metabolic disorders and chronic disease among young male draftees – the Swiss Army XXI experience. Swiss Med Wkly. 2006;136:175–84.
  4. Sandström G, Börjesson M, Rödjer S. Iron deficiency in adolescent female athletes – is iron status affected by regular sporting activity? Clin J Sport Med. 2012;22:495–500.
  5. Latunde-Dada G. O. Iron metabolism in athletes- achieving a gold standard. Eur J Haematol. (2012). doi:10.1111/ejh.12026
  6. Dubnov G, et al. High prevalence of iron deficiency and anemia in female military recruits. Mil Med. 2006;171:866–9.
  7. Cippa P, Krayenbühl P-A. Eisenmangel: Es geht nicht nur um Anämie. Schweiz Med Forum. 2014;11–12.
  8. Martius F. Eisenmangel ohne Anämie – ein heisses Eisen. in Schweiz Med Forum. 2009;9:294–9.
  9. Streuli R. A. Ferrum bonum et laudabile (lucrosumque). in Schweiz Med Forum. 2008;8:563.
  10. Colombani PC, Mannhart C. Energie- und Nährstoffaufnahme im Schweizer Spitzensport – eine erste Bestandsaufnahme zu Beginn des zweiten Jahrtausends. 2003;7–16.
  11. Mettler S, Zimmermann M. B. Iron excess in recreational marathon runners. Eur J Clin Nutr. 2010;64490–4.
  12. Ganz T. Molecular Control of Iron Transport. JASN. 2007;18:394–400.
  13. Löffler G. in S.416 ff (Springer Verlag).
  14. Ganz T, Nemeth E. Iron metabolism: interactions with normal and disordered erythropoiesis. Cold Spring Harb Perspect Med. 2012;2:a011668.
  15. Yip R. in Present Knowledge in Nutrition, Bowman BA, Russell RM 311 – 328 (ILSI Press, Washington DC, 2001).
  16. Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006;26:323–42.
  17. Young B, Zaritsky J. Hepcidin for clinicians. Clin J Am Soc Nephrol. 2009;4:1384–7.
  18. Taylor C, et al. Hematologic, iron-related, and acute-phase protein responses to sustained strenuous exercise. J Appl Physiol. 1987;62:464–9.
  19. Peeling P, Dawson B, Goodman C, Landers G, Trinder D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol. 2008;103:381–91.
  20. Peeling P. Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol. 2010;110:877–83.
  21. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102:783–8.
  22. Newlin MK, et al. The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab. 2012;22:79–88.
  23. Gaudin C, Zerath E, Guezennec CY. Gastric lesions secondary to long-distance running. Dig Dis Sci. 1990;35:1239–43.
  24. Peters HP, De Vries WR, Vanberge-Henegouwen GP, Akkermans LM. Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract. Gut. 2001;48:435–9.
  25. Waller MF, Haymes EM. The effects of heat and exercise on sweat iron loss. Med Sci Sports Exerc. 1996;28:197–203.
  26. Jones GR, Newhouse I. Sport-related hematuria: a review. Clin J Sport Med. 1997;7:119–25.
  27. Miller BJ, Pate RR, Burgess W. Foot impact force and intravascular hemolysis during distance running. Int J Sports Med. 1988;9:56–60.
  28. Telford RD, et al. Footstrike is the major cause of hemolysis during running. J Appl Physiol. 2003;94:38–42.
  29. Herklotz R, Huber A. Labordiagnose von Eisenstoffwechselstörungen. in Schweiz Med Forum. 2010;10:500–7.
  30. Brugnara C, Laufer MR, Friedman AJ, Bridges K, Platt O. Reticulocyte hemoglobin content (CHr): early indicator of iron deficiency and response to therapy. Blood. 1994;83:3100–1.
  31. Thomas C, Thomas L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin Chem. 2002;48:1066–76.
  32. Macdougall IC. What is the most appropriate strategy to monitor functional iron deficiency in the dialysed patient on rhEPO therapy? Merits of percentage hypochromic red cells as a marker of functional iron deficiency. Nephrol Dial Transplant. 1998;13:847–9.
  33. Onofrio G d’, Zini G, Ricerca BM, Mancini S, Mango G. Automated measurement of red blood cell microcytosis and hypochromia in iron deficiency and beta-thalassemia trait. Arch Pathol Lab Med. 1992;116:84–9.
  34. Onofrio G d’, et al. Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia. Blood. 1995;85:818–23.
  35. Brugnara C, Zurakowski D, DiCanzio J, Boyd T, Platt O. Reticulocyte hemoglobin content to diagnose iron deficiency in children. JAMA. 1999;281:2225–30.
  36. Franck S, Linssen J, Messinger M., Thomas L. Potential utility of Ret-Y in the diagnosis of iron-restricted erythropoiesis. Clin Chem. 2004;50:1240–2.
  37. Schumacher YO, Schmid A, König D, Berg A. Effects of exercise on soluble transferrin receptor and other variables of the iron status. Br J Sports Med. 2002;36:195–9.
  38. Magge H, Sprinz P, Adams WG, Drainoni M-L, Meyers A. Zinc protoporphyrin and iron deficiency screening: trends and therapeutic response in an urban pediatric center. JAMA Pediatr. 2013;167:361–7.
  39. Baart AM, et al. High prevalence of subclinical iron deficiency in whole blood donors not deferred for low hemoglobin. Transfusion. 2013;53:1670–7.
  40. Voss SC, et al. Variability of serum markers of erythropoiesis during 6 days of racing in highly trained cyclists. Int J Sports Med. 2014;35:89–94.
  41. Cordova A, Monserrat J, Villa G, Reyes E, Soto MA-M. Effects of AM3 (Inmunoferon) on increased serum concentrations of interleukin-6 and tumour necrosis factor receptors I and II in cyclists. J Sports Sci. 2006;24:565–73.
  42. Dickson DN, Wilkinson RL, Noakes TD. Effects of ultra-marathon training and racing on hematologic parameters and serum ferritin levels in well-trained athletes. Int J Sports Med. 1982;3:111–7.
  43. Fallon KE, Sivyer G, Sivyer K, Dare A. The biochemistry of runners in a 1600 km ultramarathon. Br J Sports Med. 1999;33:264–9.
  44. Friedmann B. Standards der Sportmedizin Sportleranämie. DEUTSCHE ZEITSCHRIFT FÜR SPORTMEDIZIN 2001;52.
  45. Shaskey DJ, Green GA. Sports haematology. Sports Med. 2000;29:27–38.
  46. Bärtsch P, Mairbäurl H, Friedmann B. Pseudo-anemia caused by sports. Ther Umsch. 1998;55:251–5.
  47. Nichols AW. Nonorthopaedic problems in the aquatic athlete. Clin Sports Med. 1999;18:395–411, viii.
  48. Heinicke K, et al. Blood volume and hemoglobin mass in elite athletes of different disciplines. Int J Sports Med. 2001;22:504–12.
  49. Steiner T, Wehrlin JP. Does hemoglobin mass increase from age 16 to 21 and 28 in elite endurance athletes? Med Sci Sports Exerc. 2011;43:1735–43.
  50. Steiner T, Wehrlin JP. Comparability of haemoglobin mass measured with different carbon monoxide-based rebreathing procedures and calculations. Scand J Clin Lab Invest. 2011;71:19–29.
  51. Hinrichs T, et al. Total hemoglobin mass, iron status, and endurance capacity in elite field hockey players. J Strength Cond Res. 2010;24:629–38.
  52. Wehrlin JP. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol. 2006;100:1938–45.
  53. Garvican LA, et al. Intravenous Iron Supplementation in Distance Runners with Low or Suboptimal Ferritin. Med Sci Sports Exerc. (2013). doi:10.1249/MSS.0b013e3182a53594.
  54. Fellmann N. Hormonal and plasma volume alterations following endurance exercise. A brief review. Sports Med. 1992;13:37–49.
  55. Hamilton T, et al. Die Radsport-Mafia und ihre schmutzigen Geschäfte: Der Insider-bericht über die Welt des Profiradsports: eine minutiöse Beichte, die erstmals das ganze... Armstrongs Schlüsselrolle darin aufzeigt. (2012).
  56. 40_ans.pdf. at <>
  57. Bad blood : Nature News. at <>
  58. Athlete Biological Passport (ABP) Operating Guidelines | World Anti-Doping Agency. at <>
  59. Saugy M, Lundby C, Robinson N. Monitoring of biological markers indicative of doping: the athlete biological passport. Br J Sports Med. 2014;48:827–32.
  60. Davies KJ, Maguire JJ, Brooks GA, Dallman PR, Packer L. Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion. Am J Physiol. 1982;242:E418–427.
  61. Davies KJ, et al. Distinguishing effects of anemia and muscle iron deficiency on exercise bioenergetics in the rat. Am J Physiol. 1984;246:E535–543.
  62. Finch CA, et al. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J Clin Invest. 1976;58:447–53.
  63. Burden RJ, et al. Impact of Intravenous Iron on Aerobic Capacity and Iron Metabolism in Elite Athletes. Med Sci Sports Exerc. (2014). doi:10.1249/MSS.0000000000000568
  64. Garvican LA, et al. Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Med Sci Sports Exerc. 2014;46:376–85.
  65. DellaValle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med Sci Sports Exerc. 2014;46:1204–15.
  66. Waldvogel S, et al. Clinical evaluation of iron treatment efficiency among non-anemic but iron-deficient female blood donors: a randomized controlled trial. BMC Med. 2012;10;8.
  67. McClung JP, et al. Randomized, double-blind, placebo-controlled trial of iron supplementation in female soldiers during military training: effects on iron status, physical performance, and mood. Am J Clin Nutr. 2009;90:124–31.
  68. Hinton PS, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur J Clin Nutr. 2007;61:30–9.
  69. Brownlie T, 4th, Utermohlen V, Hinton PS, Haas JD. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr. 2004;79:437–43.
  70. Brownlie T, 4th, Utermohlen V, Hinton PS, Giordano C, Haas JD. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr. 2002;75:734–42.
  71. Friedmann B, Weller E, Mairbaurl H, Bärtsch P. Effects of iron repletion on blood volume and performance capacity in young athletes. Med Sci Sports Exerc. 2001;33:741–6.
  72. Hinton PS, Giordano C, Brownlie T, Haas J. D. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J Appl Physiol. 2000;88:1103–11.
  73. WHO. WHO | Iron deficiency anaemia: assessment, prevention and control. WHO at <>
  74. Hallberg L, et al. Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. Br J Haematol. 1993;85:787–98.
  75. van Tellingen O. The importance of drug-transporting P-glycoproteins in toxicology. Toxicol Lett. 2001;120:31–41.
  76. Magnusson B, Hallberg L, Rossander L, Swolin B. Iron metabolism and ‘sports anemia’. I. A study of several iron parameters in elite runners with differences in iron status. Acta Med Scand. 1984,216:149–55.
  77. Thomason RW, Almiski MS. Evidence that stainable bone marrow iron following parenteral iron therapy does not correlate with serum iron studies and may not represent readily available storage iron. Am J Clin Pathol. 2009;131:580–5.
  78. Krayenbuehl P-A, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118:3222–7.
  79. Verdon F, et al. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ. 2003;326:1124.
  80. Vaucher P, Druais P-L, Waldvogel S, Favrat B. Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: a randomized controlled trial. CMAJ. 2012;184:1247–54.
  81. Gropper SS, Bader-Crowe DM, McAnulty LS, White BD, Keith RE. Non-anemic iron depletion, oral iron supplementation and indices of copper status in college-aged females. J Am Coll Nutr. 2002;21:545–52.
  82. Brutsaert TD, et al. Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am J Clin Nutr. 2003;77:441–8.
  83. Clénin GE. Eisen im Sport – oft zu wenig, gelegentlich aber auch zu viel! Schweizerische Zeitschrift für Ernährungsmedizin. 2006;21–25.
  84. Mettler S. Ferrum – ein Mineralstoff im Sport. SCHWEIZERISCHE ZEITSCHRIFT FUR SPORTMEDIZIN UND SPORTTRAUMATOLOGIE 2004;52:105–14.
  85. Mast AE, Blinder MA, Gronowski AM, Chumley C, Scott MG. Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin Chem. 1998;44:45–51.
  86. Lamanca JJ, Haymes EM. Effects of low ferritin concentration on endurance performance. Int J Sport Nutr. 1992;2:376–85.
  87. Yu D, Huo J, Xie L, Wang L. Meta-analysis of studies on cut-off value of serum ferritin for identifying iron deficiency. Wei Sheng Yan Jiu. 2013;42:228–35.
  88. Pitsis GC, Fallon KE, Fallon SK, Fazakerley R. Response of soluble transferrin receptor and iron-related parameters to iron supplementation in elite, iron-depleted, nonanemic female athletes. Clin J Sport Med. 2004;14:300–4.
  89. Fallon KE. Screening for haematological and iron-related abnormalities in elite athletes-analysis of 576 cases. J Sci Med Sport. 2008;11:329–36.
  90. Fallon KE. Utility of hematological and iron-related screening in elite athletes. Clin J Sport Med. 2004;14:145–52.
  91. Bothwell TH, Charlton RW, Cook JD, Finch CA. IRon metabolism in man. Oxford, UK: Blackwell Scientific Publications (1979).
  92. Miret S, Simpson RJ, McKie AT. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr. 2003;23:283–301.
  93. Zimmermann MB, Biebinger R, Egli I, Zeder C, Hurrell RF. Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals. Br J Nutr. 2011;105:1245–50.
  94. Monsen ER. Iron nutrition and absorption: dietary factors which impact iron bioavailability. J Am Diet Assoc. 1988;88:786–90).
  95. Hercberg S, Preziosi P, Galan P. Iron deficiency in Europe. Public Health Nutr. 2001;4:537–45.
  96. Rimon E, et al. Are we giving too much iron? Low-dose iron therapy is effective in octogenarians. Am J Med. 2005;118:1142–7.
  97. Zimmermann M.B, et al. Plasma hepcidin is a modest predictor of dietary iron bioavailability in humans, whereas oral iron loading, measured by stable-isotope appearance curves, increases plasma hepcidin. Am J Clin Nutr. 2009;90:1280–7.
  98. DellaValle DM. Iron supplementation for female athletes: effects on iron status and performance outcomes. Curr Sports Med Rep. 2013;12:234–9.
  99. Cancelo-Hidalgo MJ, et al. Tolerability of different oral iron supplements: a systematic review. Curr Med Res Opin. 2013;29:291–303.
  100. Arzneimittel-Kompendium der Schweiz. (Documed, 2012).
  101. Ritzmann, P. Eisencarboxymaltose. pharma-kritik 2010;32:29–31.
  102. Rienso®, Lösung zur intravenösen Injektion (Ferumoxytol) – Swissmedic –. at <>
  103. Rienso, Lösung zur intravenösen Injektion – Swissmedic –. at <>
  104. Arzneimittelinformation. at <>
  105. Arzneimittelinformation. at <>
  106. Prohibited List. World Anti-Doping Agency at <>
  107. Demarmels Biasiutti F. Die Regulation des Eisenstoffwechsels. Schweiz Med Forum. 2009;630–2.
  108. Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med. 2013;65:1174–94.
  109. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Body iron metabolism and pathophysiology of iron overload. Int J Hematol. 2008;88:7–15.
  110. Steinboeck F, et al. The relevance of oxidative stress and cytotoxic DNA lesions for spontaneous mutagenesis in non-replicating yeast cells. Mutat Res. 2010;688:47–52.
  111. Nowsheen S, et al. Accumulation of oxidatively induced clustered DNA lesions in human tumor tissues. Mutat Res. 2009;674:131–6.
  112. Pingitore A, et al. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31:916–22.
  113. Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med. 2011;51:942–50.
  114. Chua ACG, et al. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice. PLoS ONE. 2013;8:e78850.
  115. Wurzelmann JI, Silver A, Schreinemachers DM, Sandler RS, Everson RB. Iron intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 1996;5:503–7.
  116. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk – a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 2014;23:12–31.
  117. Heath A-LM, Fairweather-Tait SJ. Clinical implications of changes in the modern diet: iron intake, absorption and status. Best Pract Res Clin Haematol. 2002;15:225–41.
  118. Rossander-Hulthen L, Hallberg L. in Iron Nutrition in Health and Disease (Hallberg L.&Asp N.G.) 149–156 (John Libbey&Co; London, UK, 1996).
  119. Constantini NW, Eliakim A, Zigel L, Yaaron M, Falk B. Iron status of highly active adolescents: evidence of depleted iron stores in gymnasts. Int J Sport Nutr Exerc Metab. 2000;10:62–70.
  120. Rowland TW. Iron deficiency in the young athlete. Pediatr Clin North Am. 1990;37:1153–63.
  121. Spodaryk K. Iron metabolism in boys involved in intensive physical training. Physiol Behav. 2002;75:201–6.
  122. Fairweather-Tait S. in Iron Nutrition in Health and Disease (Hallberg L.&Asp N.G.) 137–148 (John Libbey&Co; London, UK, 1996).
  123. Beard JL. Iron requirements in adolescent females. J Nutr. 2000;130:440S–442S.
  124. Hallberg L. in Iron Nutrition in Health and Disease (Hallberg L.&Asp N.G.) 165–182 (John Libbey&Co; London, UK).
  125. Raunikar RA, Sabio H. Anemia in the adolescent athlete. Am J Dis Child. 1992;146:1201–5.
  126. Herklotz R, Lüthi I, Ottiger C, Huber AR. Referenzbereiche in der Hämatologie. Ther UmscH. 2006;63:5–24.
  127. Dietary Reference Intakes (DRIs): Estimated Average Requirements for Groups - 5_Summary Table Tables 1-4.pdf. at

Most read articles by the same author(s)