Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 144 No. 0708 (2014)

Effects of celecoxib on inflammatory markers in bipolar patients undergoing electroconvulsive therapy: a placebo-controlled, double-blind, randomised study

  • Mona Kargar
  • Abolghasem Yousefi
  • Mojtaba Mojtahedzadeh
  • Shahin Akhondzadeh
  • Valentin Artounian
  • Alireza Abdollahi
  • Alireza Ahmadvand
  • Padideh Ghaeli
DOI
https://doi.org/10.4414/smw.2014.13880
Cite this as:
Swiss Med Wkly. 2014;144:w13880
Published
09.02.2014

Summary

PRINCIPAL: Electroconvulsive therapy (ECT) is a treatment option for patients with bipolar disorder (BD). Alterations of markers have been reported following ECT. Aim: the aim of the present study was to assess the effect of adjunctive celecoxib on the serum cytokines of patient with BD who were undergoing ECT.

METHODS: This study was a randomised, double-blind, placebo-controlled trial in 48 patients who were diagnosed with BD and ordered to undergo six or more ECT sessions. Patients were randomly assigned to receive either placebo or celecoxib (200 mg twice daily) starting a day before the first ECT and continuing throughout the end of the sixth ECT. Blood levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and high-sensitivity C-reactive protein (hsCRP) were measured before the first ECT and repeated after the first, the third and the sixth ECT sessions. Data were analysed by using SPSS version 13.

RESULTS: Twenty-five patients (mean ± standard deviation age of 33.64 ± 9.97 years) were assigned to the celecoxib group and 23 patients (mean age of 32.61 ± 9.82 years) to the placebo group. This study found that the level of TNF-α was significantly lower (p = 0.04, t = 2.14, degrees of freedom 46) in patients receiving celecoxib compared with those on placebo at the last session of ECT. However, the other factors studied did not show any significant changes throughout the trial.

CONCLUSIONS: Celecoxib was concluded to reduce TNF-α levels significantly in the patients at the end of the study. However, the differences in IL-1β, IL-6 and hsCRP between the two groups were not significant.

References

  1. Subramaniam M, Abdin E, Vaingankar JA, Chong SA. Prevalence, correlates, comorbidity and severity of bipolar disorder: results from the Singapore Mental Health Study. J Affect Disord. 2013;146(2):189–96.
  2. Skjelstad DV, Malt UF, Holte A. Symptoms and signs of the initial prodrome of bipolar disorder: A systematic review. J Affect Disord. 2010;126(1–2):1–13.
  3. Pompili M, Rihmer Z, Innamorati M, Lester D, Girardi P, Tatarelli R. Assessment and treatment of suicide risk in bipolar disorders. Expert Rev Neurother. 2009;9(1):109–36.
  4. Söderlund J, Olsson SK, Samuelsson M, Walther-Jallow L, Johansson C, Erhardt S, et al. Elevation of cerebrospinal fluid interleukin-1β in bipolar disorder. Journal of Psychiatry & Neuroscience: JPN. 2011;36(2):114.
  5. Tsai SYM, Yang YY, Kuo CJ, Chen CC, Leu SJC. Effects of symptomatic severity on elevation of plasma soluble interleukin-2 receptor in bipolar mania. J Affect Disord. 2001;64(2):185–93.
  6. Brietzke E, Kauer-Sant’Anna M, Teixeira AL, Kapczinski F. Abnormalities in serum chemokine levels in euthymic patients with Bipolar Disorder. Brain Behav Immun. 2009;23(8):1079–82.
  7. Jones KA, Thomsen C. The role of the innate immune system in psychiatric disorders. Molecular and Cellular Neuroscience.2013;53:52–62.http://dx.doi.org/10.1016/j.mcn.2012.10.002
  8. Brietzke E, Stertz L, Fernandes BS, Kauer-Sant’Anna M, Mascarenhas M, Escosteguy Vargas A, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116(3):214–7.
  9. Kim YK, Jung HG, Myint AM, Kim H, Park SH. Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord. 2007;104(1):91–5.
  10. Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R. Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(4):952–5.
  11. O’Brien SM, Scully P, Scott LV, Dinan TG. Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord. 2006;90(2):263–7.
  12. Kapczinski F, Dias VV, Kauer-Sant’Anna M, Brietzke E, Vázquez GH, Vieta E, et al. The potential use of biomarkers as an adjunctive tool for staging bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(8):1366–71.
  13. Thirthalli J, Prasad MK, Gangadhar BN. Electroconvulsive therapy (ECT) in bipolar disorder: A narrative review of literature. Asian J Psychiatr. 2012;5(1):11–7.
  14. Nivoli AMA, Colom F, Murru A, Pacchiarotti I, Castro-Loli P, González-Pinto A, et al. New treatment guidelines for acute bipolar depression: A systematic review. J Affect Disord. 2011;129(1–3):14–26.
  15. Nivoli AMA, Murru A, Goikolea JM, Crespo JM, Montes JM, González-Pinto A, et al. New treatment guidelines for acute bipolar mania: A critical review. J Affect Disord. 2012;140(2):125–41.
  16. Medda P, Perugi G, Zanello S, Ciuffa M, Cassano G. Response to ECT in bipolar I, bipolar II and unipolar depression. J Affect Disord. 2009;118(1–3):55.
  17. Valentí M, Benabarre A, García-Amador M, Molina O, Bernardo M, Vieta E. Electroconvulsive therapy in the treatment of mixed states in bipolar disorder. Eur Psychiatry. 2008;23(1):53–6.
  18. Loo C, Katalinic N, Mitchell PB, Greenberg B. Physical treatments for bipolar disorder: A review of electroconvulsive therapy, stereotactic surgery and other brain stimulation techniques. J Affect Disord. 2011;132(1):1–13.
  19. Hestad KA, Tønseth S, Støen CD, Ueland T, Aukrust P. Raised Plasma Levels of Tumor Necrosis Factor [alpha] in Patients With Depression: Normalization During Electroconvulsive Therapy. J ECT. 2003;19(4):183–8.
  20. Taylor S. Electroconvulsive therapy: a review of history, patient selection, technique, and medication management. South Med J. 2007;100(5):494–8.
  21. Fluitman SB, Heijnen CJ, Denys DAJP, Nolen WA, Balk FJ, Westenberg HGM. Electroconvulsive therapy has acute immunological and neuroendocrine effects in patients with major depressive disorder. J Affect Disord. 2011;131(1):388–92.
  22. Mastbergen S, Lafeber F, Bijlsma J. Selective COX-2 inhibition prevents proinflammatory cytokine-induced cartilage damage. Rheumatology (Oxford). 2002;41(7):801–8.
  23. Capone ML, Tacconelli S, Di Francesco L, Sacchetti A, Sciulli MG, Patrignani P. Pharmacodynamic of cyclooxygenase inhibitors in humans. Prostaglandins Other Lipid Mediat. 2007;82(1–4):85–94.
  24. Fields C, Drye L, Vaidya V, Lyketsos C. Celecoxib or Naproxen Treatment Does Not Benefit Depressive Symptoms in Persons Age 70 and Older: Findings From a Randomized Controlled Trial. American Journal of Geriatric Psych. 2012;20(6):505.
  25. Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B. Celecoxib as adjunctive therapy in schizophrenia: A double-blind, randomized and placebo-controlled trial. Schizophr Res. 2007;90(1–3):179–85.
  26. Maier TJ, Tausch L, Hoernig M, Coste O, Schmidt R, Angioni C, et al. Celecoxib inhibits 5-lipoxygenase. Biochem Pharmacol. 2008;76(7):862–72.
  27. Funakoshi-Tago M, Shimizu T, Tago K, Nakamura M, Itoh H, Sonoda Y, et al. Celecoxib potently inhibits TNFα-induced nuclear translocation and activation of NF-κB. Biochem Pharmacol. 2008;76(5):662–71.
  28. Rapaport MH, Delrahim KK, Bresee CJ, Maddux RE, Ahmadpour O, Dolnak D. Celecoxib Augmentation of Continuously Ill Patients with Schizophrenia. Biol Psychiatry. 2005;57(12):1594–6.
  29. Müller N, Krause D, Dehning S, Musil R, Schennach-Wolff R, Obermeier M, et al. Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res. 2010;121(1-3):118.
  30. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta-Soares GB, Frey BN, et al. Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol. 2008;23(2):87–94.
  31. Sayyah M, Boostani H, Pakseresht S, Malayeri A. A preliminary randomized double–blind clinical trial on the efficacy of celecoxib as an adjunct in the treatment of obsessive–compulsive disorder. Psychiatry Res. 2011;189(3):403–6.
  32. Akhondzadeh S, Jafari S, Raisi F, Nasehi AA, Ghoreishi A, Salehi B, et al. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety. 2009;26(7):607–11.
  33. Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord. 2012; 141(2-3):308–14.
  34. Bresee CJ, Delrahim K, Maddux RE, Dolnak D, Ahmadpour O, Rapaport MH. The effects of celecoxib augmentation on cytokine levels in schizophrenia. Int J Neuropsychopharmacol. 2006;9(03):343–8.
  35. Lehtimäki K, Keränen T, Huuhka M, Palmio J, Hurme M, Leinonen E, et al. Increase in plasma proinflammatory cytokines after electroconvulsive therapy in patients with depressive disorder. J ECT. 2008;24(1):88–91.
  36. Prasad K. C-Reactive Protein (CRP)-Lowering Agents. Cardiovasc Drug Rev. 2006;24(1):33–50.
  37. Chenevard R, Hürlimann D, Béchir M, Enseleit F, Spieker L, Hermann M, et al. Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation. 2003;107(3):405–9.
  38. Title LM, Giddens K, McInerney MM, McQueen MJ, Nassar BA. Effect of cyclooxygenase-2 inhibition with rofecoxib on endothelial dysfunction and inflammatory markers in patients with coronary artery disease. J Am Coll Cardiol. 2003;42(10):1747-53.
  39. González-Ortiz M, Pascoe-González S, Kam-Ramos AM, Hernández-Salazar E. Effect of celecoxib, a cyclooxygenase-2-specific inhibitor, on insulin sensitivity, C-reactive protein, homocysteine, and metabolic profile in overweight or obese subjects. Metab Syndr Relat Disord. 2005;3(2):95–101.
  40. Tarp S, Bartels EM, Bliddal H, Furst DE, Boers M, Danneskiold-Samsøe B, et al. Effect of nonsteroidal antiinflammatory drugs on the C-reactive protein level in rheumatoid arthritis: A meta-analysis of randomized controlled trials. Arthritis Rheum. 2012;64(11):3511–21.
  41. Yap BW, Sim CH. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation. 2011;81(12):2141–55.
  42. Drezner Z, Turel O, Zerom D. A Modified Kolmogorov-Smirnov Test for Normality. Communications in Statistics-Simulation and Computation. 2010;39(4):693–704.
  43. Keselman HJ, Algina J, Kowalchuk RK. The analysis of repeated measures designs: A review. Br J Math Stat Psychol. 2001;54:1–20.