Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 144 No. 0708 (2014)

Decoding breast milk oligosaccharides

  • Thierry Hennet
  • Adrienne Weiss
  • Lubor Borsig
DOI
https://doi.org/10.4414/smw.2014.13927
Cite this as:
Swiss Med Wkly. 2014;144:w13927
Published
09.02.2014

Summary

Oligosaccharides represent a significant fraction of breast milk, reaching up to 20 g/l in early milk. Human milk oligosaccharides comprise close to 200 structures, which are not absorbed by the intestinal tissue and have no nutritional value for the breastfed infant. Early studies conducted around 1930 already attributed a prebiotic activity to milk oligosaccharides by showing their stimulatory effects on the growth of specific intestinal microbiota. In addition, milk oligosaccharides contribute to the defence against enteric pathogens by acting as soluble decoys preventing the adhesion of viruses and bacteria to their carbohydrate mucosal receptors. The structural complexity of milk oligosaccharides hampers the assignment of specific functions to single carbohydrates. The application of mouse models allows the investigation of unique milk oligosaccharides in the context of intestinal microbiota and mucosal immunity. In this respect, our recent work has demonstrated that uptake of the milk oligosaccharide 3-sialyllactose increases the inflammatory response observed in different colitis models. The proinflammatory action of 3-sialyllactose was attributed on the one hand to the modulation of intestinal bacterial groups, and on the other hand to a direct stimulatory effect on CD11c+ dendritic cells. The availability of pure oligosaccharides in large amounts will soon enable the study of these compounds in humans in the context of intestinal and metabolic disorders associated to various forms of dysbiosis.

References

  1. Stevens EE, Patrick TE, Pickler R. A History of Infant Feeding. J Perinat Educ. 2009;18:32–9.
  2. Lucas A, Cole TJ. Breast milk and neonatal necrotising enterocolitis. Lancet. 1990;336:1519–23.
  3. Holman RC, Stoll BJ, Curns AT, Yorita KL, Steiner CA, et al. Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr Perinat Epidemiol. 2006;20:498–506.
  4. Ziegler EE. Adverse effects of cow's milk in infants. Nestle Nutr Workshop Ser Pediatr Program 2007;60:185–96; discussion 196–89.
  5. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722.
  6. Viverge D, Grimmonprez L, Cassanas G, Bardet L, Solere M. Variations in oligosaccharides and lactose in human milk during the first week of lactation. J Pediatr Gastroenterol Nutr. 1990;11:361–4.
  7. Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, et al. A strategy for annotating the human milk glycome. J Agric Food Chem. 2006;54:7471–80.
  8. Kleene R, Berger EG. The molecular biology of glycosyltransferases. BiochimBiophysActa. 1993;1154:283–325.
  9. Marionneau S, Cailleau-Thomas A, Rocher J, Le Moullac-Vaidye B, Ruvoen N, et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie. 2001;83:565–73.
  10. Le Pendu J. Histo-blood group antigen and human milk oligosaccharides: genetic polymorphism and risk of infectious diseases. Adv Exp Med Biol. 2004;554:135–43.
  11. Coppa GV, Pierani P, Zampini L, Carloni I, Carlucci A, et al. Oligosaccharides in human milk during different phases of lactation. Acta Paediatr Suppl. 1999;88:89–94.
  12. Erney R, Hilty M, Pickering L, Ruiz-Palacios G, Prieto P. Human milk oligosaccharides: a novel method provides insight into human genetics. Adv Exp Med Biol. 2001;501:285–97.
  13. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2002;71:1589–96.
  14. Rudloff S, Pohlentz G, Borsch C, Lentze MJ, Kunz C. Urinary excretion of in vivo (1)(3)C-labelled milk oligosaccharides in breastfed infants. Br J Nutr. 2012;107:957–63.
  15. Schönfeld H. Über die Beziehungen der einzelnen Bestandteile der Frauenmilch zur Bifidusflora. Jahrbuch der Kinderh. 1926;113:19–60. German.
  16. Polonowski M, Lespagnol A. Sur deux nouveaux sucres du lait de femme, le gynolactose et l’allolactose. C R Acad Sci 1931;192. French.
  17. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol. 2013;11: 497–504.
  18. Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun. 1992;60:3971–8.
  19. Kuhn R, Brossmer R. Über die O-Acetyl-lactamin-säure-lactose aus Kuh Colostrum und ihre Spaltbarkeit durch Influenza-Virus. ChemBer. 1956;98:2013–35. German.
  20. Jiang X, Huang P, Zhong W, Tan M, Farkas T, et al. Human milk contains elements that block binding of noroviruses to human histo-blood group antigens in saliva. J Infect Dis. 2004;190:1850–9.
  21. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278:14112–120.
  22. Coppa GV, Bruni S, Zampini L, Galeazzi T, Facinelli B, et al. Oligosaccharides of human milk inhibit the adhesion of Listeria monocytogenes to Caco-2 cells. Ital J Pediatr. 2003;29:61–8. Italian.
  23. Andersson B, Porras O, Hanson LA, Lagergard T, Svanborg-Eden C. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. J Infect Dis. 1986;153:232–7.
  24. Otnaess AB, Laegreid A, Ertresvag K. Inhibition of enterotoxin from Escherichia coliand Vibrio cholerae by gangliosides from human milk. Infect Immun. 1983;40:563–9.
  25. Maeda N, Nigou J, Herrmann JL, Jackson M, Amara A, et al. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem. 2003;278:5513–6.
  26. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007;7:255–66.
  27. Velupillai P, Harn DA. Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: a mechanism for regulation of CD4+ T-cell subsets. Proc Natl Acad Sci U S A. 1994;91:18–22.
  28. Prieto PA, Mukerji P, Kelder B, Erney R, Gonzalez D, et al. Remodeling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase. J Biol Chem. 1995;270:29515–9.
  29. Fuhrer A, Sprenger N, Kurakevich E, Borsig L, Chassard C, et al. Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization. J Exp Med. 2010;207:2843–54.
  30. Kurakevich E, Hennet T, Hausmann M, Rogler G, Borsig L. Milk oligosaccharide sialyl(α2,3)lactose activates intestinal CD11c+ cells through TLR4. Proc Natl Acad Sci U S A. 2013;110:17444–9.
  31. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000;12:20–6.
  32. Kuijf ML, Samsom JN, van Rijs W, Bax M, Huizinga R, et al. TLR4–mediated sensing of Campylobacter jejuni by dendritic cells is determined by sialylation. J Immunol. 2010;185:748–55.
  33. Agoston K, Kroger L, Dekany G, Thiem J. Solid-phase random glycosylation. J Comb Chem. 2009;11:813–9.
  34. Moro G, Minoli I, Mosca M, Fanaro S, Jelinek J, et al. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr. 2009;34:291–5.
  35. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.
  36. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.
  37. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, et al. 8) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455: 1109–1113.