Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 143 No. 3536 (2013)

Diagnosis and treatment of iron deficiency in medical inpatients at a Swiss tertiary university referral hospital: a retrospective observational cohort study of clinical practice

  • Balthasar L Hug
  • André Tichelli
  • Pascal Benkert
  • Guido Stirnimann
  • Juerg A Schifferli
Cite this as:
Swiss Med Wkly. 2013;143:w13847


BACKGROUND: Iron deficiency anaemia is a common disease with a prevalence of up to 19.2% in populations at risk. However, the prevalence of iron deficiency (ID) in hospitalised patients is not well known. The aims of this retrospective, observational cohort study were to evaluate the current diagnostic procedures for, and treatment of, ID as well as to estimate the prevalence of undiagnosed ID in hospitalised patients at the division of internal medicine in a Swiss tertiary university referral centre.

METHODS: Within a study period of 6 months, data from all patients hospitalised at the division of internal medicine were analysed for the presence of anaemia (defined as haemoglobin levels for males <130 g/l and for females <120 g/l) and ID (ferritin <15 µg/l or ferritin <50 µg/l and transferrin saturation <20%).

RESULTS: A total of 2,781 hospitalisation cases were analysed (2,251 unique patients, male 55.5%, mean age 66.4 years). In 2,267 cases (81.5%) results of a red blood cell count were available. In 329 cases (14.5%) iron parameters (IP) were determined and 45 (13.7%) cases / unique patients with ID were detected. Among the remaining 1,938 cases without IP determination, statistical estimation predicted 103 (56‒329) undiagnosed ID cases. In ID patients, the most prevalent diagnosis was heart failure (24.4%). Of these patients, 72.7% had haemorrhage-facilitating drugs on hospital admission or discharge.

CONCLUSION: Iron deficiency is common in internal medicine and up to two-thirds of cases may not be diagnosed. Every seventh patient who had iron parameters analysed was iron deficient and two-thirds of patients with ID were treated with intravenous iron.


  1. Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL. Prevalence of iron deficiency in the United States. JAMA. 1997;277(12):973–6.
  2. Grondin MA, Ruivard M, Perreve A, Derumeaux-Burel H, Perthus I, Roblin J, et al. Prevalence of iron deficiency and health-related quality of life among female students. J Am Coll Nutr. 2008;27(2):337–41.
  3. Blaker H. Confidence curves and improved exact confidence intervals for discrete distributions. Canad J Statist. 2000;28:783–98.
  4. Team RDC. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria: R Development Core Team (2011); 2011.
  5. Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood. 2004;104(8):2263–8.
  6. Kdoqi, National Kidney F. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Anemia in Chronic Kidney Disease. Am J Kidney Dis. 2006;47(5 Suppl 3):S11–145.
  7. Patel KV. Epidemiology of Anemia in Older Adults. Seminars in Hematology. 2008;45(4):210–7.
  8. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48.
  9. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J. 2010;31(15):1872–80.
  10. Mei Z, Cogswell ME, Parvanta I, Lynch S, Beard JL, Stoltzfus RJ, et al. Hemoglobin and ferritin are currently the most efficient indicators of population response to iron interventions: an analysis of nine randomized controlled trials. J Nutr. 2005;135(8):1974–80.
  11. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA, McCabe GP. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: a meta-analysis. Am J Clin Nutr. 2010;92(3):546–55.
  12. Mast AE, Blinder MA, Gronowski AM, Chumley C, Scott MG. Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin Chem. 1998;44(1):45–51.
  13. Hsu CY, McCulloch CE, Curhan GC. Iron status and hemoglobin level in chronic renal insufficiency. J Am Soc Nephrol. 2002;13(11):2783–6.
  14. Galloway MJ, Smellie WS. Investigating iron status in microcytic anaemia. BMJ. 2006;333(7572):791–3.
  15. Jolobe OM. Mean corpuscular haemoglobin, referenced and resurrected. J Clin Pathol. 2011;64(9):833–4.
  16. Ruwald MH, Hansen ML, Lamberts M, Kristensen SL, Wissenberg M, Olsen A-MS, et al. Accuracy of the ICD-10 discharge diagnosis for syncope. Europace. 2012.
  17. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448–54.
  18. Krayenbuehl PA, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118(12):3222–7.
  19. Favrat B. Ferric Carboxymaltose Treatment to Improve Fatigue Symptoms in Iron-deficient Non-anaemic Women of Child Bearing Age (Prefer). 2012.
  20. Organization WH. Nurtritional Anemias. Report of a scientific group. WHO technical report series No. 405. Geneva: World Health Organization; 1968.
  21. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70.
  22. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139(2):137–47.

Most read articles by the same author(s)