Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 143 No. 0910 (2013)

SWISSPAQ: validation of a new physical activity questionnaire in cardiac rehabilitation patients

  • Caroline Bähler
  • Birna Bjarnason-Wehrens
  • Jean-Paul Schmid
  • Hugo Saner
DOI
https://doi.org/10.4414/smw.2013.13752
Cite this as:
Swiss Med Wkly. 2013;143:w13752
Published
24.02.2013

Summary

QUESTION UNDER STUDY: Physical activity is known to play an important role in protection against cardiovascular disease. At present, there is no validated questionnaire recording physical activity for German-speaking cardiac patients. The aim of this study was to develop and validate a new physical activity questionnaire for German-speaking patients attending a cardiac rehabilitation programme.

METHODS: A questionnaire on physical activity was developed on the basis of personal and telephone interviews, using qualitative and quantitative approaches. The questionnaire was validated in 48 patients during or after cardiac rehabilitation. For this purpose, data on energy expenditure in MET (metabolic equivalent) hours per day, collected from the questionnaire, were compared with the results of combined heart rate and accelerometry measurement (ECG-accelerometry) using an ACTIHEART-monitor and a physical activity diary. Test-retest reliability was examined in a subset of 33 patients who completed the questionnaire twice within 3 weeks.

RESULTS: There was a significant correlation between the questionnaire data and the ECG-accelerometry (r = 0.407, p = 0.004). The mean (± standard deviation) difference between the results derived from the questionnaire and those from ECG-accelerometry was 1.05 ± 4.79 MET-hours per day. The retest showed a correlation of r = 0.624 (p <0.001) with a mean difference between the questionnaires of 0.06 ± 3.70 MET-hours per day.

CONCLUSION: The physical activity questionnaire has acceptable validity and is reliable when assessing levels of physical activity in cardiac rehabilitation patients. It merits further evaluation in other subsets of cardiac patients.

References

  1. Schweizerische Herzstiftung. Available at: http://www.swissheart.ch/d/service/facts.htm [Accessed February 2, 2009].
  2. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.
  3. Chow CK, Jolly S, Rao-Melacini P, Fox KA, Anand SS, Yusuf S. Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation. 2010;121(6):750–8.
  4. Hambrecht R, Niebauer J, Marburger C, Grunze M, Kalberer B, Hauer K, et al. Various intensities of leisure time physical activity in patients with coronary artery disease: effects on cardiorespiratory fitness and progression of coronary atherosclerotic lesions. J Am Coll Cardiol. 1993;22(2):468–77.
  5. Sato S, Makita S, Uchida R, Ishihara S, Majima M. Physical activity and progression of carotid intima-media thickness in patients with coronary heart disease. J Cardiol. 2008;51(3):157–62.
  6. Richardson CR, Kriska AM, Lantz PM, Hayward RA. Physical activity and mortality across cardiovascular disease risk groups. Med Sci Sports Exerc. 2004;36(11):1923–9.
  7. Hamer M, Stamatakis E. Physical activity and mortality in men and women with diagnosed cardiovascular disease. Eur J Cardiovasc Prev Rehabil. 2009;16(2):156–60.
  8. Oguma Y, Shinoda-Tagawa T. Physical activity decreases cardiovascular disease risk in women: review and meta-analysis. Am J Prev Med. 2004;26(5):407–18.
  9. Kotseva K, Wood D, De Backer G, De Bacquer D, Pyorala K, Keil U. EUROASPIRE III: a survey on the lifestyle, risk factors and use of cardioprotective drug therapies in coronary patients from 22 European countries. Eur J Cardiovasc Prev Rehabil. 2009;16(2):121–37.
  10. Vanhees L, Lefevre J, Philippaerts R, Martens M, Huygens W, Troosters T, et al. How to assess physical activity? How to assess physical fitness? Eur J Cardiovasc Prev Rehabil. 2005;12(2):102–14.
  11. Lee IM, Rexrode KM, Cook NR, Manson JE, Buring JE. Physical activity and coronary heart disease in women: is “no pain, no gain” passe? JAMA. 2001;285(11):1447–54.
  12. Manson JE, Hu FB, Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med. 1999;341(9):650–8.
  13. Ainsworth BE, Bassett DR, Jr., Strath SJ, Swartz AM, O’Brien WL, Thompson RW, et al. Comparison of three methods for measuring the time spent in physical activity. Med Sci Sports Exerc. 2000;32(9 Suppl):S457–64.
  14. Kriska A, Caspersen C. Introduction to a Collection of Physical Activity Questionnaires. Med Sci Sports Exerc. 1997;29(Supplement 6):5–9.
  15. Kallings LV, Sierra Johnson J, Fisher RM, Faire U, Stahle A, Hemmingsson E, et al. Beneficial effects of individualized physical activity on prescription on body composition and cardiometabolic risk factors: results from a randomized controlled trial. Eur J Cardiovasc Prev Rehabil. 2009;16(1):80–4.
  16. Mader U, Martin BW, Schutz Y, Marti B. Validity of four short physical activity questionnaires in middle-aged persons. Med Sci Sports Exerc. 2006;38(7):1255–66.
  17. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–504.
  18. Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273(5):402–7.
  19. Strath SJ, Bassett DR, Jr., Swartz AM, Thompson DL. Simultaneous heart rate-motion sensor technique to estimate energy expenditure. Med Sci Sports Exerc. 2001;33(12):2118–23.
  20. Brage S, Brage N, Franks PW, Ekelund U, Wareham NJ. Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur J Clin Nutr. 2005;59(4):561–70.
  21. Crouter SE, Churilla JR, Bassett DR, Jr. Accuracy of the Actiheart for the assessment of energy expenditure in adults. Eur J Clin Nutr. 2008;62(6):704–11.
  22. Barreira T, Kang M, Caputo J, Farley S, Renfrow M. Validation of the Actiheart Monitor for the Measurement of Physical Activity. International Journal of Exercise Science 2009;2(1):60–71.
  23. Brage S, Brage N, Ekelund U, Luan J, Franks PW, Froberg K, et al. Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free-living. Eur J Appl Physiol. 2006;96(5):517–24.
  24. Brage S, Brage N, Franks PW, Ekelund U, Wong MY, Andersen LB, et al. Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol. 2004;96(1):343–51.
  25. Brage S, Ekelund U, Brage N, Hennings MA, Froberg K, Franks PW, et al. Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. J Appl Physiol. 2007;103(2):682–92.
  26. Chakravarti IM, Laha RG, Roy J. Handbook of methods of applied statistics. New York,: Wiley; 1967.
  27. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.
  28. Harris TJ, Owen CG, Victor CR, Adams R, Ekelund U, Cook DG. A comparison of questionnaire, accelerometer, and pedometer: measures in older people. Med Sci Sports Exerc. 2009;41(7):1392–402.
  29. Tanasescu M, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Exercise type and intensity in relation to coronary heart disease in men. JAMA. 2002;288(16):1994–2000.
  30. Orrell A, Doherty P, Miles J, Lewin R. Development and validation of a very brief questionnaire measure of physical activity in adults with coronary heart disease. Eur J Cardiovasc Prev Rehabil. 2007;14(5):615–23.
  31. Pettee Gabriel K, McClain JJ, Lee CD, Swan PD, Alvar BA, Mitros MR, et al. Evaluation of physical activity measures used in middle-aged women. Med Sci Sports Exerc. 2009;41(7):1403–12.
  32. Wendel-Vos GC, Schuit AJ, Saris WH, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol. 2003;56(12):1163–9.
  33. DuBose KD, Edwards S, Ainsworth BE, Reis JP, Slattery ML. Validation of a historical physical activity questionnaire in middle-aged women. J Phys Act Health. 2007;4(3):343–55.
  34. Wonisch M, Hofmann P, Fruhwald FM, Kraxner W, Hodl R, Pokan R, et al. Influence of beta-blocker use on percentage of target heart rate exercise prescription. Eur J Cardiovasc Prev Rehabil. 2003;10(4):296–301.
  35. Bühner M. Einführung in die Test- und Fragebogenkonstruktion. 2. ed. München: Pearson Studium; 2006. German
  36. Gerber Y, Myers V, Goldbourt U, Benyamini Y, Scheinowitz M, Drory Y. Long-term trajectory of leisure time physical activity and survival after first myocardial infarction: a population-based cohort study. Eur J Epidemiol. 2011;26(2):109–16.
  37. Steinacker JM, Liu Y, Muche R, Koenig W, Hahmann H, Imhof A, et al. Long term effects of comprehensive cardiac rehabilitation in an inpatient and outpatient setting. Swiss Med Wkly. 2011;140:w13141.
  38. Strath SJ, Bassett DR, Jr., Thompson DL, Swartz AM. Validity of the simultaneous heart rate-motion sensor technique for measuring energy expenditure. Med Sci Sports Exerc. 2002;34(5):888–94.