Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 142 No. 3536 (2012)

HLA and non-HLA polymorphisms in renal transplantation

  • Stéphanie Laperrousaz
  • Jean-Marie Tiercy
  • Jean Villard
  • Sylvie Ferrari-Lacraz
Cite this as:
Swiss Med Wkly. 2012;142:w13668


Despite progress made in the field of immunosuppression, graft rejection remains a major cause of morbidity and mortality of patients after solid organ transplantation. There are several genetic causes which could influence the outcome of renal transplantation. One of the main determining factors of success in renal transplantation is human leukocyte antigen (HLA) compatibility between donor and recipient, particularly at HLA-A, HLA-B and HLA-DR loci. HLA compatibility remains an essential immunological barrier, despite modern immunosuppressive treatments. There is also evidence that natural killer (NK) cell alloreactivity contributes to the immune response which modulates the outcome of renal transplantation. However, the clinical impact of combinations of KIR genes (family of NK cell receptors) and their HLA ligands in donor and recipient still remains to be clearly established. Furthermore, cytokines are involved in the immune reaction against the renal transplant, but the implication of the genetic polymorphism of cytokines is strongly debated. Therefore, while HLA compatibility remains a primordial component for any renal transplantation, it would be premature to use the two other genetic aspects as criteria for organ allocation and as prognostic factors.


  1. Clark B, Unsworth DJ. HLA and kidney transplantation. J Clin Pathol. 2010;63:21–5.
  2. Aydingoz SE, Takemoto SK, Pinsky BW, Salvalaggio PR, Lentine KL, Willoughby L, et al. The impact of human leukocyte antigen matching on transplant complications and immunosuppression dosage. Hum Immunol. 2007;68:491–9.
  3. Wissing KM, Fomegne G, Broeders N, Ghisdal L, Hoang AD, Mikhalski D, et al. HLA mismatches remain risk factors for acute kidney allograft rejection in patients receiving quadruple immunosuppression with anti-interleukin-2 receptor antibodies. Transplantation. 2008;85:411–6.
  4. Halloran PF. The clinical importance of alloantibody-mediated rejection. Am J Transplant. 2003;3:639–40.
  5. Lefaucheur C, Suberbielle-Boissel C, Hill GS, Nochy D, Andrade J, Antoine C, et al. Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation. Contrib Nephrol. 2009;162:1–12.
  6. Ferrari-Lacraz S, Tiercy JM, Villard J. Detection of anti-HLA antibodies by solid-phase assay in kidney transplantation: friend or foe? Tissue Antigens. 2012;79:315–25.
  7. Wujciak T, Opelz G. Evaluation of HLA matching for CREG antigens in Europe. Transplantation. 1999;68:1097–9.
  8. Su X, Zenios SA, Chakkera H, Milford EL, Chertow GM. Diminishing significance of HLA matching in kidney transplantation. Am J Transplant. 2004;4:1501–8.
  9. Opelz G, Dohler B. Effect of human leukocyte antigen compatibility on kidney graft survival: comparative analysis of two decades. Transplantation. 2007;84:137–43.
  10. Meier-Kriesche HU, Scornik JC, Susskind B, Rehman S, Schold JD. A lifetime versus a graft life approach redefines the importance of HLA matching in kidney transplant patients. Transplantation. 2009;88:23–9.
  11. Tran TH, Dohler B, Heinold A, Scherer S, Ruhenstroth A, Opelz G. Deleterious impact of mismatching for human leukocyte antigen-C in presensitized recipients of kidney transplants. Transplantation. 2011;92:419–25.
  12. Tambur AR, Leventhal JR, Friedewald JJ, Ramon DS. The complexity of human leukocyte antigen (HLA)-DQ antibodies and its effect on virtual crossmatching. Transplantation. 2010;90:1117–24.
  13. Kosmoliaptsis V, Sharples LD, Chaudhry A, Johnson RJ, Fuggle SV, Halsall DJ, et al. HLA class I amino acid sequence-based matching after interlocus subtraction and long-term outcome after deceased donor kidney transplantation. Hum Immunol. 2010;71:851–6.
  14. Rizzari MD, Suszynski TM, Gillingham KJ, Matas AJ. Consideration of donor age and human leukocyte antigen matching in the setting of multiple potential living kidney donors. Transplantation. 2011;92:70–5.
  15. Duquesnoy RJ, Marrari M. HLAMatchmaker-based definition of structural human leukocyte antigen epitopes detected by alloantibodies. Curr Opin Organ Transplant. 2009;14:403–9.
  16. Duquesnoy RJ. Antibody-reactive epitope determination with HLAMatchmaker and its clinical applications. Tissue Antigens. 2011;77:525–34.
  17. Abbas AK, Lichtman AH. Basic immunology: function and disorders of the immune system. Philadelphia: Saunders; 2001.
  18. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.
  19. Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005;5:201–14.
  20. Parham P. The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol. 2008;20:311–6.
  21. Du Z, Gjertson DW, Reed EF, Rajalingam R. Receptor-ligand analyses define minimal killer cell Ig-like receptor (KIR) in humans. Immunogenetics 2007;59:1–15.
  22. Moretta L, Biassoni R, Bottino C, Mingari MC, Moretta A. Human NK-cell receptors. Immunol Today. 2000;21:420–2.
  23. Uhrberg M. Shaping the human NK cell repertoire: an epigenetic glance at KIR gene regulation. Mol Immunol. 2005;42:471–5.
  24. Hadaya K, Avila Y, Valloton L, de Rham C, Bandelier C, Ferrari-Lacraz S, et al. Natural killer cell receptor-repertoire and functions after induction therapy by polyclonal rabbit anti-thymocyte globulin in unsensitized kidney transplant recipients. Clin Immunol. 2010;137:250–60.
  25. Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Human natural killer cells: Molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett. 2005;100:7–13.
  26. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10.
  27. Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett. 2005;100:7–13.
  28. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–8.
  29. Rajalingam R. Variable interactions of recipient killer cell immunoglobulin-like receptors with self and allogenic human leukocyte antigen class I ligands may influence the outcome of solid organ transplants. Curr Opin Organ Transplant. 2008;13:430–7.
  30. Villard J: The role of natural killer cells in human solid organ and tissue transplantation. J Innate Immun. 2011;3:395–402.
  31. Van der TW, Bromberg JS. Natural killer cells and the immune response in solid organ transplantation. Am J Transplant. 2010;10:1354–8.
  32. Bromberg JS, Heeger PS, Li XC. Evolving paradigms that determine the fate of an allograft. Am J Transplant. 2010;10:1143–8.
  33. Kunert K, Seiler M, Mashreghi MF, Klippert K, Schonemann C, Neumann K, et al. KIR/HLA ligand incompatibility in kidney transplantation. Transplantation. 2007;84:1527–33.
  34. Hanvesakul R, Spencer N, Cook M, Gunson B, Hathaway M, Brown R, et al. Donor HLA-C genotype has a profound impact on the clinical outcome following liver transplantation. Am J Transplant. 2008;8:1931–41.
  35. Tran TH, Mytilineos J, Scherer S, Laux G, Middleton D, Opelz G. Analysis of KIR ligand incompatibility in human renal transplantation. Transplantation. 2005;80:1121–3.
  36. Tran TH, Middleton D, Dohler B, Scherer S, Meenagh A, Sleator C, Opelz G. Reassessing the impact of donor HLA-C genotype on long-term liver transplant survival. Am J Transplant. 2009;9:1674–8.
  37. van Bergen J, Thompson A, Haasnoot GW, Roodnat JI, de Fijter JW, Claas FH, et al. KIR-ligand mismatches are associated with reduced long-term graft survival in HLA-compatible kidney transplantation. Am J Transplant. 2011;11:1959–64.
  38. Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med. 2006;203:1851–8.
  39. Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–9.
  40. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40.
  41. Hidalgo LG, Sis B, Sellares J, Campbell PM, Mengel M, Einecke G, et al. NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated rejection. Am J Transplant. 2010;10:1812–22.
  42. Kruger B, Schroppel B, Murphy BT. Genetic polymorphisms and the fate of the transplanted organ. Transplant Rev. (Orlando) 2008;22:131–40.
  43. Nikolova PN, Ivanova MI, Mihailova SM, Myhailova AP, Baltadjieva DN, Simeonov PL, et al. Cytokine gene polymorphism in kidney transplantation – impact of TGF-beta 1, TNF-alpha and IL-6 on graft outcome. Transpl Immunol. 2008;18:344–8.
  44. Tiercy JM. Immunogenetics of hematopoietic stem cell transplantation: the contribution of microsatellite polymorphism studies. Int J Immunogenet. 2011;38:365–72.
  45. Marshall SE, McLaren AJ, Haldar NA, Bunce M, Morris PJ, Welsh KI. The impact of recipient cytokine genotype on acute rejection after renal transplantation. Transplantation. 2000;70:1485–91.
  46. Thakkinstian A, Dmitrienko S, Gerbase-Delima M, McDaniel DO, Inigo P, Chow KM, et al. Association between cytokine gene polymorphisms and outcomes in renal transplantation: a meta-analysis of individual patient data. Nephrol Dial Transplant. 2008;23:3017–23.
  47. Cartwright NH, Keen LJ, Demaine AG, Hurlock NJ, McGonigle RJ, Rowe PA, et al. A study of cytokine gene polymorphisms and protein secretion in renal transplantation. Transpl Immunol. 2001;8:237–44.
  48. Muller-Steinhardt M, Hartel C, Muller B, Kirchner H, Fricke L. The interleukin-6 -174promoter polymorphism is associated with long-term kidney allograft survival. Kidney Int. 2002;62:1824–7.
  49. Mittal RD, Manchanda PK. Association of interleukin (IL)-4 intron-3 and IL-6 -174 G/C gene polymorphism with susceptibility to end-stage renal disease. Immunogenetics. 2007;59:159–65.
  50. Martin J, Worthington J, Harris S, Martin S. The influence of class II transactivator and interleukin-6 polymorphisms on the production of antibodies to donor human leucocyte antigen mismatches in renal allograft recipients. Int J Immunogenet. 2009;36:235–9.
  51. Goldfarb-Rumyantzev AS, Naiman N. Genetic prediction of renal transplant outcome. Curr Opin Nephrol Hypertens. 2008;17:573–9.
  52. Asderakis A, Sankaran D, Dyer P, Johnson RW, Pravica V, Sinnott PJ, et al. Association of polymorphisms in the human interferon-gamma and interleukin-10 gene with acute and chronic kidney transplant outcome: the cytokine effect on transplantation. Transplantation. 2001;71:674–7.
  53. Sankaran D, Asderakis A, Ashraf S, Roberts IS, Short CD, Dyer PA, et al. Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney Int. 1999;56:281–8.
  54. Tinckam K, Rush D, Hutchinson I, Dembinski I, Pravica V, Jeffery J, Nickerson P. The relative importance of cytokine gene polymorphisms in the development of early and late acute rejection and six-month renal allograft pathology. Transplantation. 2005;79:836–41.
  55. Alakulppi NS, Kyllonen LE, Jantti VT, Matinlauri IH, Partanen J, Salmela KT, et al. Cytokine gene polymorphisms and risks of acute rejection and delayed graft function after kidney transplantation. Transplantation. 2004;78:1422–8.
  56. Brabcova I, Petrasek J, Hribova P, Hyklova K, Bartosova K, Lacha J, Viklicky O. Genetic variability of major inflammatory mediators has no impact on the outcome of kidney transplantation. Transplantation. 2007;84:1037–44.
  57. Mytilineos J, Laux G, Opelz G. Relevance of IL10, TGFbeta1, TNFalpha, and IL4Ralpha gene polymorphisms in kidney transplantation: a collaborative transplant study report. Am J Transplant. 2004;4:1684–90.
  58. Kocierz M, Siekiera U, Kolonko A, Karkoszka H, Chudek J, Cierpka L, Wiecek A. -174G/C interleukin-6 gene polymorphism and the risk of transplanted kidney failure or graft loss during a 5-year follow-up period. Tissue Antigens. 2011;77:283–90.
  59. Dmitrienko S, Hoar DI, Balshaw R, Keown PA. Immune response gene polymorphisms in renal transplant recipients. Transplantation. 2005;80:1773–82.
  60. Marshall SE, McLaren AJ, McKinney EF, Bird TG, Haldar NA, Bunce M, et al. Donor cytokine genotype influences the development of acute rejection after renal transplantation. Transplantation. 2001;71:469–76.
  61. Muller-Steinhardt M, Fricke L, Muller B, Ebel B, Kirchner H, Hartel C. Cooperative influence of the interleukin-6 promoter polymorphisms -597, -572 and -174 on long-term kidney allograft survival. Am J Transplant. 2004;4:402–6.
  62. Hoffmann S, Park J, Jacobson LM, Muehrer RJ, Lorentzen D, Kleiner D, et al. Donor genomics influence graft events: the effect of donor polymorphisms on acute rejection and chronic allograft nephropathy. Kidney Int. 2004;66:1686–93.
  63. Alakulppi NS, Kyllonen LE, Partanen J, Salmela KT, Laine JT. Lack of association between thrombosis-associated and cytokine candidate gene polymorphisms and acute rejection or vascular complications after kidney transplantation. Nephrol Dial Transplant. 2008;23:364–8.