Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 142 No. 3132 (2012)

Tissue engineering – nanomaterials in the musculoskeletal system

  • Rainer Josef Egli
  • Reto Luginbühl
DOI
https://doi.org/10.4414/smw.2012.13647
Cite this as:
Swiss Med Wkly. 2012;142:w13647
Published
29.07.2012

Abstract

The musculoskeletal tissues bone, cartilage and ligament/tendon are highly structured nanocomposites consisting of nanofibres embedded in a matrix of different composition. Thus, it was a logical step that during the hype of nano in the last decade, nanotechnology and nanomaterials became a hot topic in the field of musculoskeletal repair. Especially the fact that using nanomaterials would encompass a biomimetic approach, thus copying nature, was promising. However, it became evident that using nanomaterials in the repair of musculoskeletal tissues had a longer history than initially thought and its way was paved with failures, which are important to remember when applying current ideas. This current opinion paper summarises some fundamental aspects of nanomaterials to be used for musculoskeletal application and discusses where this field might move to in the near future.

References

  1. Feynman RP. There's plenty of room at the bottom. Caltech Engineering and Science. 1960;23(5):22–36.
  2. Binnig G, Rohrer H. Scanning tunneling microscopy, an atomic probe. Scan Electron Microsc. 1983;v(pt 3):1079–82.
  3. Christenson EM, Anseth KS, van den Beucken JJ, Chan CK, Ercan B, Jansen JA et al. Nanobiomaterial applications in orthopedics. J Orthop Res. 2007;25(1):11–22.
  4. Wan AC, Ying JY. Nanomaterials for in situ cell delivery and tissue regeneration. Adv Drug Deliv Rev. 2010;62(7–8):731–40.
  5. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, et al. Bone structure and formation: A new perspective. Mat Sci Eng R. 2007;58(3-5):77–116.
  6. Dienst M, Burks RT, Greis PE. Anatomy and biomechanics of the anterior cruciate ligament. Orthop Clin North Am. 2002;33(4):605–20, v.
  7. ap Gwynn I, Wade S, Kaab MJ, Owen GR, Richards RG. Freeze-substitution of rabbit tibial articular cartilage reveals that radial zone collagen fibres are tubules. J Microsc. 2000;197(Pt 2):159–72.
  8. Hughes LC, Archer CW, ap Gwynn I. The ultrastructure of mouse articular cartilage: Collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Eur Cell Mater. 2005;9:68–84.
  9. Egli RJ, Wernike E, Grad S, Luginbuhl R. Physiological cartilage tissue engineering effect of oxygen and biomechanics. Int Rev Cell Mol Biol. 2011;289:37–87.
  10. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.
  11. Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering. J Drug Target. 2007;15(4):241–52.
  12. Albee FH, Morrison HF. Studies in bone growth: Triple calcium phosphate as a stimulus to osteogenesis. Ann Surg. 1920;71:32–9.
  13. Bohner M. Resorbable biomaterials as bone graft substitutes. Materials Today. 2010;13(1–2):24–30.
  14. Habibovic P, Yuan H, van den Doel M, Sees TM, van Blitterswijk CA, de Groot K. Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. J Orthop Res. 2006;24(5):867–76.
  15. Kasten P, Vogel J, Luginbühl R, Niemeyer P, Weiss S, Schneider S, et al. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Cells Tissues Organs. 2006;183(2):68–79.
  16. Heinemann S, Heinemann C, Jäger M, Neunzehn J, Wiesmann HP, Hanke T. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. ACS Appl Mater Interfaces. 2011;3(11):4323–31.
  17. Ji B, Gao H. Mechanical properties of nanostructure of biological materials. J Mech Phys Solids. 2004;52(9):1963–90.
  18. Tang Z, Kotov NA, Magonov S, Ozturk B. Nanostructured artificial nacre. Nat Mater. 2003;2(6):413–8.
  19. Wang R, Gupta HS. Deformation and fracture mechanisms of bone and nacre. Annu Rev Mater Res. 2011;41:41–73.
  20. Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5(1):52–5.
  21. Barthelat F. Biomimetics for next generation materials. Philos Transact A Math Phys Eng Sci. 2007;365(1861):2907–19.
  22. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials. 1998;19(21):1935–43.
  23. Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromol Biosci. 2006;6(1):70–7.
  24. Xu HHK, Eichmiller FC, Giuseppetti AA. Reinforcement of a self-setting calcium phosphate cement with different fibers. J Biomed Mater Res. 2000;52(1):107–14.
  25. Zuo Y, Yang F, Wolke JGC, Li Y, Jansen JA. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomaterialia. 2010;6(4):1238–47.
  26. Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25(21):5171–80.
  27. Xu HHK, Quinn JB, Takagi S, Chow LC. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials. 2004;25(6):1029–37.
  28. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 2006;12(5):1197–211.
  29. Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesion and proliferation of nih 3t3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng. 2007;13(3):579–87.
  30. Hsia HC, Nair MR, Mintz RC, Corbett SA. The fiber diameter of synthetic bioresorbable extracellular matrix influences human fibroblast morphology and fibronectin matrix assembly. Plast Reconstr Surg. 2011;127(6):2312–20.
  31. Li WJ, Jiang YJ, Tuan RS. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng. 2006;12(7):1775–85.
  32. Nuernberger S, Cyran N, Albrecht C, Redl H, Vécsei V, Marlovits S. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials. 2011;32(4):1032–40.
  33. Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2011;17(5-6):831–40.
  34. Sanders JE, Stiles CE, Hayes CL. Tissue response to single-polymer fibers of varying diameters: Evaluation of fibrous encapsulation and macrophage density. J Biomed Mater Res. 2000;52(1):231–7.
  35. Marimuthu M, Kim S. Survey of the state of the art in biomaterials, cells, genes and proteins integrated into micro- and nanoscaffolds for tissue regeneration. Current Nanoscience. 2009;5(2):189–203.
  36. Venugopal J, Low S, Choon AT, Ramakrishna S. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater. 2008;84(1):34–48.
  37. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.
  38. Kirkpatrick CJ, Krump-Konvalinkova V, Unger RE, Bittinger F, Otto M, Peters K. Tissue response and biomaterial integration: The efficacy of in vitro methods. Biomol Eng. 2002;19(2-6):211–7.
  39. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.
  40. Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139–47.
  41. Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir. 2004;20(16):6800–7.
  42. Alberola AP, Rädler JO. The defined presentation of nanoparticles to cells and their surface controlled uptake. Biomaterials. 2009;30(22):3766–70.
  43. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28(2):344–53.
  44. Thurnherr T, Su DS, Diener L, Weinberg G, Manser P, Pfänder N et al. Comprehensive evaluation of in vitro toxicity of three large-scale produced carbon nanotubes on human jurkat t cells and a comparison to crocidolite asbestos. 2009;3(4):319–38.
  45. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G et al. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5–22.
  46. Loosli Y, Luginbuehl R, Snedeker JG. Cytoskeleton reorganization of spreading cells on micro-patterned islands: A functional model. Philos Transact A Math Phys Eng Sci. 2010;368(1920):2629–52.
  47. Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature. 2009;462(7272):433–41.
  48. Price RL, Waid MC, Haberstroh KM, Webster TJ. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials. 2003;24(11):1877–87.
  49. Minns RJ, Flynn M. Intra-articular implant of filamentous carbon fibre in the experimental animal. J Bioeng. 1978;2(3–4):279–86.
  50. Kumar N, Sharma AK, Singh GR, Gupta OP. Carbon fibres and plasma-preserved tendon allografts for gap repair of flexor tendon in bovines: Clinical, radiological and angiographical observations. J Vet Med A Physiol Pathol Clin Med. 2002;49(3):161–8.
  51. Lewandowska-Szumieł M, Komender J, Chłopek J. Interaction between carbon composites and bone after intrabone implantation. J Biomed Mater Res. 1999;48(3):289–96.
  52. Wolter D. Biocompatibility of carbon fibre and carbon fibre microparticles. Aktuelle Probl Chir Orthop. 1983;26:28–36.
  53. Leyshon RL, Channon GM, Jenkins DHR, Ralis ZA. Flexible carbon fibre in late ligamentous reconstruction for instability of the knee. J Bone Joint Surg Br. 1984;66(2):196–200.
  54. Rushton N, Dandy DJ, Naylor CPE. The clinical, arthroscopic and histological findings after replacement of the anterior cruciate ligament with carbon-fibre. J Bone Joint Surg Br. 1983;65(3):308–9.
  55. Hunziker EB. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432–63.
  56. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am. 2000;82(4):457–77.
  57. Bruinink A, Luginbuehl R. Evaluation of biocompatibility using in vitro methods: Interpretation and limitations. Adv Biochem Eng Biotechnol. 2012;126:117–52.
  58. Saito N, Aoki K, Usui Y, Shimizu M, Hara K, Narita N, et al. Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev. 2011;40(7):3824–34.