Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 142 No. 1314 (2012)

Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier

  • Tina Buerki-Thurnherr
  • Ursula von Mandach
  • Peter Wick
DOI
https://doi.org/10.4414/smw.2012.13559
Cite this as:
Swiss Med Wkly. 2012;142:w13559
Published
25.03.2012

Summary

Exposure of pregnant women and their unborn children to engineered nanoparticles (NPs) is not yet of major public concern. However, this may soon change in light of the ever-increasing production of NPs and the continuous appearance of novel NP-containing consumer products. However, NPs may not only pose risks to exposed individuals; they offer major potential for the development of novel therapeutic strategies to treat specifically either the mother or the developing foetus. Hence there is every reason to explore the transplacental transfer of engineered NPs in more detail, and to find answers to the vast number of open questions in this fascinating field of research.

References

  1. Lanphear BP, CV Vorhees, DC Bellinger. Protecting children from environmental toxins. PLoS Med. 2005;2(3):e61.
  2. Koffie RM, et al. Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences, 2011.
  3. Kim BY, JT Rutka, WC Chan. Current concepts: Nanomedicine. N Engl J Med. 2010;363(25):2434–43.
  4. Shvedova AA, et al. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacology & Therapeutics. 2009;121(2):192–204.
  5. Bobak M. Outdoor air pollution, low birth weight, and prematurity. Environ Health Perspect. 2000;108(2):173–6.
  6. Huynh M, et al. Relationships between air pollution and preterm birth in California. Paediatr Perinat Epidemiol. 2006;20(6):454–61.
  7. Salvi S. Health effects of ambient air pollution in children. Paediatr Respir Rev. 2007;8(4):275–80.
  8. Woodruff TJ, LA Darrow, JD Parker. Air pollution and postneonatal infant mortality in the United States, 1999-2002. Environ Health Perspect. 2008;116(1):110–5.
  9. Andrade SE, et al. Prescription drug use in pregnancy. Am J Obstet Gynecol. 2004;191(2):398–407.
  10. Gagne JJ, et al. Prescription drug use during pregnancy: a population-based study in Regione Emilia-Romagna, Italy. Eur J Clin Pharmacol. 2008;64(11):1125–32.
  11. Menezes V, A Malek, JA Keelan. Nanoparticulate drug delivery in pregnancy: placental passage and fetal exposure. Curr Pharm Biotechnol. 2011;12(5):731–42.
  12. Syme MR, JW Paxton, JA Keelan. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet. 2004;43(8):487–514.
  13. Geiser M, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005;113(11):1555–60.
  14. Conner SD, SL Schmid. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.
  15. Lee WK, JK Choi, SH Cha. Co-localization and interaction of human organic anion transporter 4 with caveolin-1 in primary cultured human placental trophoblasts. Exp Mol Med. 2008;40(5):505–13.
  16. Lambot N, et al. Evidence for a clathrin-mediated recycling of albumin in human term placenta. Biol Reprod. 2006;75(1):90–7.
  17. Ockleford CD, A Whyte. Differeniated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: coated vesicles. J Cell Sci. 1977;25:293–312.
  18. Zhao F, et al. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small. 2011;7(10):1322–37.
  19. Jiang W, et al. Nanoparticle-mediated cellular response is size-dependent. Nat Nano. 2008;3(3):145–50.
  20. Zhang L, et al. Receptor-mediated cellular uptake of nanoparticles: A switchable delivery system. Small. 2011;7(11):1538–41.
  21. Kertschanska S, G Kosanke, P Kaufmann. Pressure dependence of so-called transtrophoblastic channels during fetal perfusion of human placental villi. Microsc Res Tech. 1997;38(1-2):52–62.
  22. Kertschanska S, et al. Distensible transtrophoblastic channels in the rat placenta. Placenta. 2000;21(7):670–7.
  23. van der Aa EM, et al. Mechanisms of drug transfer across the human placenta. Pharm World Sci. 1998;20(4):139–48.
  24. Stulc J, Stulcova B. Asymmetrical transfer of inert hydrophilic solutes across rat placenta. Am J Physiol. 1993;265(3 Pt 2):R670–5.
  25. Stulc J, Stulcova B. Effect of NaCl load administered to the fetus on the bidirectional movement of 51Cr-EDTA across rat placenta. Am J Physiol. 1996;270(5 Pt 2):R984–9.
  26. Myren M, et al. The human placenta – an alternative for studying foetal exposure. Toxicol In Vitro. 2007;21(7):1332–40.
  27. Prouillac C, Lecoeur S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos. 2010;38(10):1623–35.
  28. Basha S, Vaidhyanathan S, Pauletti GM. Selection of peptide ligands for human placental transcytosis systems using in vitro phage display. Methods Mol Biol. 2011;716:141–56.
  29. Semmler-Behnke M, et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small. 2008;4(12):2108–11.
  30. Enders AC, Blankenship TN. Comparative placental structure. Adv Drug Deliv Rev. 1999;38(1):3–15.
  31. Ala-Kokko TI, Myllynen P, Vähäkangas K. Ex vivo perfusion of the human placental cotyledon: implications for anesthetic pharmacology. International Journal of Obstetric Anesthesia. 2000;9(1):26–38.
  32. Hutson JR, et al. The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther. 2011;90(1):67–76.
  33. Malek A, et al. The impact of cocaine and heroin on the placental transfer of methadone. Reprod Biol Endocrinol. 2009;7:61.
  34. Panigel M, Pascaud M, Brun JL. Radioangiographic study of circulation in the villi and intervillous space of isolated human placental cotyledon kept viable by perfusion. J Physiol. (Paris) 1967;59(1 Suppl):277.
  35. Schneider H, Panigel M, Dancis J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am J Obstet Gynecol. 1972;114(6):822–8.
  36. Pietroiusti A, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 2011;5(6):4624–33.
  37. Yamashita K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8.
  38. Chu M, et al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small. 2010;6(5):670–8.
  39. Takeda K, et al. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci. 2009;55:95–102.
  40. Sumner SC, et al. Distribution of carbon-14 labeled C60 ([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine. J Appl Toxicol. 2010;30(4):354–60.
  41. Tian F, et al. Surface modification and size dependence in particle translocation during early embryonic development. Inhal Toxicol. 2009;21(Suppl 1):92–6.
  42. Semmler-Behnke M, et al. Uptake of 1.4 nm versus 18 nm gold nanoparticles in secondary target organs is size dependent in control and pregnant rats after intratracheal or intravenous application. In: EuroNanoForum 2007 – Nanotechnology in Industrial Applications. 2007. Düsseldorf, Germany.
  43. Myllynen PK, et al. Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol. 2008;26(2):130–7.
  44. Wick P, et al. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect. 2010;118(3):432–6.
  45. Hougaard KS, et al. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part Fibre Toxicol. 2010;7:16.
  46. Fujimoto A, et al. Diesel exhaust affects immunological action in the placentas of mice. Environ Toxicol. 2005;20(4):431–40.
  47. Sugamata M, et al. Maternal diesel exhaust exposure damages newborn murine brains. J Health Sci. 2006;52:82–4.
  48. Takahashi S, Matsuoka O. Cross placental transfer of 198Au-colloid in near term rats. J Radiat Res. (Tokyo), 1981;22(2):242–9.
  49. Refuerzo JS, et al. Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. Am J Obstet Gynecol. 2011;204(6):546 e5-9.
  50. Bhabra G, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol. 2009;4(12):876–83.
  51. Parry MC, et al. Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials. Biomaterials. 2010;31(16):4477–83.
  52. Sood A, et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol. 2011.
  53. Lehmann AD, et al. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm. 2011;77(3):398–406.
  54. Rothen-Rutishauser BM, Kiama SG, Gehr P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol. 2005;32(4):p. 281–9.
  55. Kelm JM, Fussenegger M. Microscale tissue engineering using gravity-enforced cell assembly. Trends in Biotechnology. 2004;22(4):195–202.

Most read articles by the same author(s)