Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 141 No. 4950 (2011)

Artificial muscle: the human chimera is the future

  • Piergiorgio Tozzi
DOI
https://doi.org/10.4414/smw.2011.13311
Cite this as:
Swiss Med Wkly. 2011;141:w13311
Published
05.12.2011

Summary

Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of “smart” materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials “behave” similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

References

  1. Morgan NB. Medical shape memory alloy applications. The market and its products. Mat Scien Engin. 2003:378(25):16–23.
  2. Duerig T, Pelton A, Stockel D. An overview of NiTi medical applications. Mat Sci Engin. 1999;273:149–60.
  3. Bar-Cohen Y. Biomimetics using nature to inspire human innovation. Bioinspir Biomim. 2006;1:1–12.
  4. Bar-Cohen Y. Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. 2nd ed. Bellingham, WA: SPIE Press; 2004:8.
  5. Ebron VH, Yang Z, DJ, Kozlov ME, Oh J, Xie H, Razal J, et al. Fuel-powered artificial muscles. Science. 2006;311:1580–3.
  6. Sawyer PN, Page M, Baseliust L, Mc Cool C, Lester E, Stanczewsky B, et al. Further studies of nitinol wire as contractile artificial muscle for an artificial heart. Cardiovasc Dis Bulletin Texas Heart Institute. 1976;3(1):65–78.
  7. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task force on Practice Guidelines and the European Society of Cardiology Commettee for practice Guidelines. J Am Coll Cardiol. 2006;48:e149-e246.
  8. Yuda S, Nakatani S, Kosakai Y, Yamagishi M, Miyatake K. Long term follow up of atrial contraction after the maze procedure in patients with mitral valve disease. J Am Coll Cardiol. 2001;37(6):1622–7.
  9. Tozzi P, Hayoz D, Thévenaz P, Roulet JY, Salchli F, von Segesser LK. Artificial muscles to restore transport function of diseased atria. ASAIO J. 2008;54(1):11–3.
  10. Tozzi P, Hayoz D, Siniscalchi G, Salchli F, von Segesser LK. Artificial muscle to wash blood out of fibrillating atrium: an alternative to lifelong anticoagulation. ASAIO J. 2009;55(1):24–7.
  11. Abdelnour-Berchtold E, Tozzi P, Siniscalchi G, Hayoz D, von Segesser LK. Atrial assist device, a new alternative to lifelong anticoagulation? Swiss Med Wkly. 2009;139(5-6):82–7.
  12. Tozzi P, Hayoz D, Taub S, Muradbegovic M, Rizzo E, von Segesser LK. Biometal muscle to restore atrial transport function in a permanent atrial fibrillation animal model: a potential tool in the treatment of end-stage heart failure. Eur J Cardiothorac Surg. 2010;37(4):870–4.
  13. Hemoto H, Harasaki H, Fujimoto LK, Navarro R, White M, Whalen R, et al. Systemic and local effects of heat dissipation in the thermally powered LVAS. ASAIO Trans. 1988;34(3):361–6.
  14. Kamdar F, Boyle A, Liao K, Colvin-Adams M, Joyce L, John R. Effects of centrifugal, axial and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant. 2009;28(4):352–9.
  15. Lee R, Te AE, Kaplan SA, Sandhu JS. Temporal trends in adoption of and indications for the artificial urinary sphincter. J Urol. 2009;181;2622–7.
  16. Montague DK, Angermeier KW. Postprostatectomy urinary incontinence:the case for artificial urinary sphincter implantation. Urology. 2000;55(2):2–4.
  17. Tollefson TT, Senders CW. Restoration of eyelid closure in facial paralysis using artificial muscle. Laryngoscope. 2007;117(11):1907–11.
  18. Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA, Pagani FD, et al.; HeartMate II investigators, continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55(17):1826–34.
  19. Chachques JC, Argyriadis PG, Fontaine G, Hebert JL, Frank RA, D'Attellis N, et al. Right ventricular cardiomyoplasty: 10-year follow-up, Ann Thorac Surg. 2003;75(5):1464–8.
  20. Suzuki Y, Daitoku K, Minakawa M, Fukui K, Fukuda I. Dynamic cardiomyoplasty using artificial muscle, J Artif Organs. 2008;11(3):160–2. Epub 2008 Oct 5.
  21. Muradbegovic M, Taub S, Rizzo E, von Segesser LK, Tozzi P.Ultimate test bench for pediatric biventricular assist device based on artificial muscles. ASAIO J. 2011;57(1):62–7.
  22. Müller B, Deyhle H, Mushkolaj S, Wieland M. The challenges in artificial muscle research to treat incontinence. Swiss Med Wkly. 2009;139(41-42):591–5.
  23. Senders CW, Tollefson TT, Curtiss S, Wong-Foy A, Prahlad H. Force requirements for artificial muscle to create an eyelid blink with eyelid sling. Arch Facial Plast Surg. 2010;12(1):30–6.
  24. Watanabe M, Sekine K, Hori Y, Shiraishi Y, Maeda T, Honma D, et al. Artificial esophagus with peristaltic movement. ASAIO J. 2005;51(2):158–61.

Most read articles by the same author(s)