Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 140 No. 3738 (2010)

Superparamagnetic nanoparticles – a tool for early diagnostics

  • M Hofmann-Amtenbrink
  • H Hofmann
  • X Montet
Cite this as:
Swiss Med Wkly. 2010;140:w13081


Nanoparticles show several interesting new physical and biological properties and therefore play an increasing role in pharmaceutics and medicine. For more than 30 years this research field has been developing slowly but steadily from physical and biological interest (bench) to applications in clinics (bedside). However, many of these particles for biomedical applications are still in the pre-clinical or clinical phase. Combined with drugs or genes these nanoparticles may change the viability of or the transcription processes in cells, which make them interesting for the pharmaceutical industry, cell biology and diagnostics.

Because most of the application of superparamagnetic nanoparticles as therapeutic tool, like non-viral vector, drug delivery, are still far from clinical use, this review will concentrate on superparamagnetic nanoparticles as versatile agent for early diagnosis, including the use of such particles as contrast agent for MR imaging and as vehicle for the detection of biomarkers.


  1. Neumaier CE, Baio G, Ferrini S, Corte G, Daga A. MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research. Tumori. 2008;94(2):226–33.
  2. Budde MD, Frank JA. Magnetic tagging of therapeutic cells for MRI. J Nucl Med. 2009;50(2):171–4.
  3. Dousset V, Tourdias T, Brochet B, Boiziau C, Petry KG. How to trace stem cells for MRI evaluation? J Neurol Sci. 2008; 265(1–2):122–6. Epub 2007 Oct 25.
  4. Pankhurst QA, Thanh NKT, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2009; 42:224001.
  5. Jordan A, Scholz R, Maier-Hauff K, Johanssen M, Wust P, Nadobny J, et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater. 2001;225(1–2), 2001:118–26.
  6. Le Renard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rüfenacht D, et al. The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials. 2010;31(4):691–705. Epub 2009 Oct 29.
  7. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36:R167–81.
  8. Walling MA, Novak JA, Shepard JR. Quantum dots for live cell and in vivo imaging. Int J Mol Sci. 2009;10(2):441–91. Epub 2009 Feb 3.
  9. Wyss C, Schaefer SC, Juillerat-Jeanneret L, Lagopoulos L, Lehr HA, Becker CD, et al. Molecular imaging by micro-CT: specific E-selectin imaging. Eur Radiol. 2009;19(10):2487–94.
  10. Montet X, Pastor CM, Vallée JP, Becker CD, Geissbuhler A, Morel DR, et al. Improved visualization of vessels and hepatic tumors by micro-computed tomography (CT) using iodinated liposomes. Invest Radiol. 2007;42(9):652–8.
  11. Gilmore JL, Yi X, Quan L, Kabanov AV. Novel Nanomaterials for Clinical Neuroscience. J Neuroimmune Pharmacol. 2008;3(2):38–94. Epub 2008 Jan.
  12. LaConte L, Nitin N, Bao G. Magnetic nanoparticle probes. NanoToday. 2005; 8(5):32–8.
  13. Son SJ, Bai X, Lee SB. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications. Drug Discov Today. 2007;12(15-16):650–6.
  14. Deerinck TJ. The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Pathol. 2008;36(1):112–6.
  15. Fang C, Zhang MQ. Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem. 2009;19:6258–66.
  16. Duncan R, Spreafico F. Polymer conjugates. Pharmacokinetic considerations for design and development. Clin Pharmacokinet. 1994;27(4):290–306.
  17. Boyd BJ. Past and future evolution in colloidal drug delivery systems”, Expert Opin Drug Deliv. 2008;5(1):69–85.
  18. Duncan R. Designing polymer conjugates as lysosomotropic nanomedicines. Biochem Soc Trans. 2007;35(1):56–60.
  19. Widder KJ, Senyel AE, Scarpelli GD. Magnetic microspheres: a model system of site specific drug delivery in vivo. Proc Soc Exp Biol Med. 1978:158;141–6.
  20. Widder KJ, Senyel AE, Ranney DF. Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol Chemother. 1979;16: 213–71.
  21. Gupta AS, Curtis G. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials. 2004;25(15):3029–40.
  22. Babicˇ M, Horák D, Trchová M, Jendelová P, Glogarová K, Lesný P, et al. Poly(l-lysine)-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjug Chem. 2008;19(3):740–50. Epub 2008 Feb 21.
  23. Euliss LE, Grancharov SG, O’Brien S, Deming TJ, Stucky GD, Murray CB, et al. Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media. Nano Lett. 2003;3(11):1489–93.
  24. Bowen CV, Zhang X, Saab G, et al. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med. 2002;48:52–61.
  25. Mornet S, Portier J, Duguet E. A method for synthesis and functionalisation of ultra small superparamagnetic covalent carriers based on maghemite and dextran. J Magn Magn Mater. 2005;293:127–34.
  26. Roch A, Gossuin Y, Muller RN, et al. Superparamagnetic colloid suspensions: Water magnetic relaxation and clustering. J Magn Magn Mater. 2005;293:532–9.
  27. Corot C, Robert P, Idée JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58:1471–504.
  28. Thorek DLJ, Cehn AK, Czupryna J, Tsourkas A. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Ann Biomed Engineering. 2006;34(1):23–38.
  29. Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;1:483–96.
  30. Mc Bain CS, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Intern J Nanomed. 2008;3(2):169–8031 Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.
  31. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.
  32. Montet-Abou K, Montet X, Weissleder R, Josephson L. Cell internalization of magnetic nanoparticles using transfection agents. Mol Imaging. 2007;6(1):1–9.
  33. Montet-Abou K, Montet X, Weissleder R, Josephson L. Transfection agent induced nanoparticles cell laoding. Mol Imaging. 2005;4(3):165–71.
  34. Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci. 2002;89:1452–64. Epub 2000 Sep 15.
  35. Grüttner C, Teller J, Schütt W, Westphal F, Schümichen C, Paulke BR. Preparation and characterization of magnetic nanospheres for in vivo application. In: Häfeli U, Schütt W, Teller J, Zborowski M, editors. Scientific and clinical applications of magnetic carriers. New York: Plenum Press; 1997, p. 53–68.
  36. Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials. 2005;26(15):2685–94.
  37. Chastellain M, Petri-Fink A, Hofmann H. Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. Journal of Colloid and Interface Science. 2004;278(2):353–60.
  38. Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, et al. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J. 2006;35(5):446–50.
  39. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C et al. Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater. 2004;284:145-60.
  40. Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir. 2004;20(6):2472–7.
  41. Levin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, et al. Tat peptide derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology. 2000;18:410–4.
  42. Gupta AK. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed. 2007;2(1):23–3.
  43. Di Marco M. Physicochemical characterization of ultra small superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine. 2007;2(4):609–22.
  44. Kim YR, Yudina A, Figueiredo JL, Reichardt W, Hu-Lowe D, Petrovsky A, et al. Detection of early antiangiogenic effects in human colon adenocarcinoma xenografts: in vivo changes of tumour blood volume in response to experimental VEGFR tyrosine kinase inhibitor. Cancer Res. 2005; 65(20):9253–60.
  45. Montet X, Lazeyras F, Howarth N, Mentha G, Rubbia-Brandt L, Becker CD, et al. Specificity of SPIO particles for characterization of liver hemangiomas using MRI. Abdom Imaging. 2004;29(1):60–70.
  46. Sun C, Lee JSH, Zhang M. Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.
  47. Wang YXJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.
  48. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.
  49. Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: Physicochemical characteristics and clinical applications – A review. J Drug Target. 1998;6:167–74.
  50. Okuhata Y. Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev. 1999;37:121–37.
  51. Ogushi M, Nagayama K, Wada A. Dextrane-magnetite: A new relaxation reagent and its application to T2 measurements in gel systems. J Magn Res. 1978;29;599–601.
  52. Tanimoto A, Yuasa Y, Shinmoto H, Kurata T, Yamashita T, Okuda S, et al. Investigation of in vivo contrast mechanism of superparamagnetic iron oxide (SPIO) particles. Proc Intl Soc Mag Reson Med. 2001;9:2034.
  53. Stoll G, and Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnet resonance imaging. Neuroscience. 2009;158:1151–60.
  54. Beckmann N, Falk R, Zurbrügg S, Dawson J, Engelhardt P. Macrophage infiltration into the rat knee detected by MRI in a model of Antigen induced arthritis. Magn Reson Med. 2003;49:1047–55.
  55. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H. Tissue-specific MR contrast agents. Eur J Radiol. 2003;46:33–44.
  56. Saebo KB. Degradation, metabolism and relaxation properties of iron oxide particles for magnetic resonance imaging [dissertation]. University of Uppsala; 2004.
  57. Lange N, Becker CD, Montet X. Molecular imaging in a (pre-)clinical context. Acta Gastroenterol Belg. 2008;71(3):308–17.
  58. Reiner CS, Lutz AM, Tschirch F, Fröhlich JM, Gaillard S, Marincek B, et al. USPIO-enhanced magnetic resonance imaging oft he knee in asymptotic volunteers. Eur Radiol. 2009;19:1715–22.
  59. Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation. 2003;108:1009–14. Epub 2003 August 11.
  60. von zur Mühlen C, von Elverfeldt D, Bassler N, Neudorfer I, Steitz B, Petri-Fink A, et al. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): Implications on imaging of atherosclerotic plaques. Atherosclerosis. 2007;193:102–11.
  61. Steitz B, Hofmann H, Kamau SW, Hassa PO, Hottiger MO, von Rechenberg B, et al. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. J Magn Magn Mater. 2007;311:300–5.
  62. Montet-Abou K, Daire JL, Hyacinthe JN, Jorge-Costa M, Grosdemange K, Mach F, et al. In vivo labeling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J. 2010 Jun;31(11):1410–20.
  63. Herschman HR. Molecular Imaging: Looking at problems, seeing solutions. Science. 2003;302:605–8.
  64. Wickline SA, Lanza, GM. Nanotechnology for molecular Imaging and targeted therapy. Circulation. 2003;107:1092–5.
  65. Wickline SA, Neubauer AM, Winter PM, Shelton DC, Lanza GM. Molecular Imaging and Therapy of Artherosclerosis with targeted nanoparticles. J Mag Res Imaging. 2007;25:667–80.
  66. Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R. Tomographic fluorescence imaging of tumour vascular volume in mice. Radiology. 2007;242(3):751–8.
  67. Zhang Z, van den Bos EJ, Wielopolski PA, de Jong-Popijus M, Bernsen MR, Duncker DJ, Krestin GP. In vitro imaging of single living human umilical vein endothelial cells with a clinical 3.0-T MRI scanner. 2005;18(4):175–85.
  68. Montet X, Weissleder R, Josephson L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem. 2006;17(4):905–11.
  69. Salaklang J, Steitz B, Finka A, O’Neil CP, Moniatte M, van der Vlies AJ, et al. Superparamagnetic Nanoparticles as a Powerful Systems Biology Characterization Tool in the Physiological Context. Angewandte Chemie International Edition. 2008;47(41):7857–60.