Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 140 No. 3536 (2010)

Laser scanning microscopy combined with image restoration to analyse a 3D model of the human epithelial airway barrier

  • B Rothen-Rutishauser
  • AD Lehmann
  • MJ Clift
  • F Blank
  • P Gehr
DOI
https://doi.org/10.4414/smw.2010.13060
Cite this as:
Swiss Med Wkly. 2010;140:w13060
Published
30.08.2010

Summary

A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.

References

  1. Pawley J. Handbook of biological confocal microsopcy, 3rd edn. Berlin: Springer; 2006.
  2. Rothen-Rutishauser B, Kramer SD, Braun A, Gunthert M, Wunderli-Allenspach H. MDCK cell cultures as an epithelial in vitro model: cytoskeleton and tight junctions as indicators for the definition of age-related stages by confocal microscopy. Pharm Res. 1998;15:964–71.
  3. Rothen-Rutishauser B, Braun A, Gunthert M, Wunderli-Allenspach H. Formation of multilayers in the caco-2 cell culture model: a confocal laser scanning microscopy study. Pharm Res. 2000;17:460–5.
  4. Rothen-Rutishauser BM, Kiama SG, Gehr P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol. 2005;32:281–9.
  5. Roggen EL, Soni NK, Verheyen GR. Respiratory immunotoxicity: an in vitro assessment. Toxicol In Vitro. 2006;20:1249–64.
  6. Graf BW, Boppart SA. Imaging and analysis of three-dimensional cell culture models. Methods Mol Biol. 2010;591:211–27.
  7. Minsky M. Microscopy Apparatus. 1957. Patent
  8. White JG, Amos WB, Fordham M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol. 1987;105:41–8.
  9. Inoué S. Foundations of confocal scanned imaging in light microscopy. Handbook of Biological Confocal Microscopy: Pawley, J. B.; 1995.
  10. Sheppard C. Scanning optical microscopy. In Advances in optical and electron microsopcy. Edited by Barer R, Cosslett VE. Academic Press, London; 1987:1–98.
  11. Messerli JM, van der Voort HT, Rungger-Brandle E, Perriard JC. Three-dimensional visualization of multi-channel volume data: the amSFP algorithm. Cytometry. 1993;14:725–35.
  12. Gonzalez RC, Wintz P. Digital image restoration, 2nd edn. Addison-Wesley Publishing Company; 1987.
  13. Brakenhoff GJ, van der Voort HT, van Spronsen EA, Linnemans WA, Nanninga N. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature. 1985;317:748–9.
  14. Pàstor MV. Direct immunofluorescent labeling of cells. Methods Mol Biol. 2010;588:135–42.
  15. Watkins S. Immunohistochemistry. Curr Protoc Cytom. 2009, Chapter 12: Unit.
  16. Willingham MC. Fluorescence labeling of surface antigens of attached or suspended tissue-culture cells. Methods Mol Biol. 2010;588:151.
  17. Mullins JM. Overview of conventional fluorescence photomicrographie. Methods Mol Biol. 2010;588:181–6.
  18. Wiedenmann J, Oswald F, Nienhaus GU. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life. 2009;61:1029–42.
  19. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76.
  20. Ochs M, Weibel E. Functional design of the human lung for gas exchange. In Fishman’s Pulmonary Diseases and Disorders. 4th ed edition. Edited by Fishman AP, Elias JA, Fishman JA, Grippi MA, Senior RM, Pack A. McGrawHill, New York 2008; 2008.
  21. Gehr P, Schürch S, Berthiaume Y, Im Hof V, Geiser M. Particle retention in airways by surfactant. J Aerosol Med. 1990;3:27–43.
  22. Schürch S, Gehr P, Im Hof V, Geiser M, Green Francis. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol. 1990;80:17–32.
  23. Blank F, von Garnier C, Obregon C, Rothen-Rutishauser B, Gehr P, Nicod L. Role of dendritic cells in the lung: in vitro models, animal models and human studies. Expert Rev Resp Med. 2008;2(2):215–33.
  24. Holt PG, Schon-Hegrad MA, McMenamin PG. Dendritic cells in the respiratory tract. Int Rev Immunol. 1990;6:139–49.
  25. McWilliam AS, Holt PG, Gehr P. Dendritic cells as sentinels of immune surveillance in the airways. In Particle-lung interactions. Edited by Gehr P, Heyder J. New York, Basel: Marcel Dekker; 2000:473–89.
  26. Nicod LP. Lung defenses: an overview. Eur Respir Rev. 2005;95:45–50.
  27. Muller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Ru-tishauser B. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface. 2009.
  28. Obregon C, Rothen-Rutishauser B, Gitahi SK, Gehr P, Nicod LP. Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. Am J Pathol. 2006;169:2127–36.
  29. Obregon C, Rothen-Rutishauser B, Gerber P, Gehr P, Nicod LP. Active uptake of dendritic cell-derived exovesicles by epithelial cells induces the release of inflammatory mediators through a TNF-alpha-mediated pathway. Am J Pathol. 2009;175:696–705.
  30. Blank F, Rothen-Rutishauser B, Gehr P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol. 2007;36:669–77.
  31. Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17:62–70.
  32. Forbes I, I: Human airway epithelial cell lines for in vitro drug transport and metabolism studies. 2000;3:18–27.
  33. Rothen-Rutishauser B, Muhlfeld C, Blank F, Musso C, Gehr P. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol. 2007;4:9.
  34. Lehmann AD, Daum N, Lehr CM, Bur M, Parak W, Gehr P, et al. An in vitro triple cell co-culture model of the human alveolar epithelial barrier including primary cells. Submitted to J R Soc Interface. 2010.
  35. Handler JS, Green N, Steele RE. Cultures as epithelial models: porous-bottom culture dishes for studying transport and differentiation. Methods Enzymol. 1989;171:736–44.
  36. Voisin C, Aerts C, Jakubczk E, Tonnel AB. La culture cellulaire en phase gazeuse. Un nouveau modele experimental d’etude in vitro des activites des macrophages alveolaires. Bull Eur Physiopathol Respir. 1977;13:69–82.
  37. Rothen-Rutishauser B, Blank F, Muhlfeld C, Gehr P. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol. 2008;4:1075–89.
  38. Brandenberger Ch, Rothen-Rutishauser B, Mühlfeld Ch, Schmid O, Ferron GA, Maier KL et al. Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol. 2009;242:56–65.
  39. Blank F, Rothen-Rutishauser BM, Schurch S, Gehr P. An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J Aerosol Med. 2006;19:392–405.
  40. INOUE S. Polarization optical studies of the mitotic spindle. I. The demonstration of spindle fibers in living cells. Chromosoma. 1953;5:487–500.
  41. Gräf R, Rietdorf J, Zimmermann T. Live cell spinning disk microscopy. In Advances in biochemical engineering/biotechnology. Springer Berlin/Heidelberg; 2005:57–75.
  42. Waters JC. Live-cell fluorescence imaging. Methods Cell Biol. 2007;81:115–40.
  43. Knot HJ, Laher I, Sobie EA, Guatimosim S, Gomez-Viquez L, Hartmann H, et al. Twenty years of calcium imaging: cell physiology to dye for. Mol Interv. 2005;5:112–27.
  44. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods. 2008;46:143–51.
  45. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263:802–5.
  46. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene. 1992;111:229–33.
  47. Day RN, Schaufele F. Fluorescent protein tools for studying protein dynamics in living cells: a review. J Biomed Opt. 2008;13:031202.
  48. Riesen FK, Rothen-Rutishauser B, Wunderli-Allenspach H. A ZO1-GFP fusion protein to study the dynamics of tight junctions in living cells. Histochem Cell Biol 2002;117:307–15.
  49. Xing Y, Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark. 2008;4:307–19.