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Loss of inhibition over master pathways of
bone mass regulation results in osteosclerotic
bone metastases in prostate cancer
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Prostate cancer is the most common cancer
among men in industrialised countries. Most pa-
tients with prostate cancer, however, will not die
of it. As a result, many of them will experience
symptomatic metastasis during the course of the
disease. Prostate cancer has a high propensity to
metastasize to bone. Unlike many other cancers
prostate cancer cells induce a rather osteoscle-
rotic than osteolytic reaction in the bone marrow
by interfering with physiological bone remodel-
ling. A proper understanding of the mechanisms
of tumour cell-induced bone alterations and exag-
gerated bone deposition in prostate cancer may

open new and urgently needed therapeutic ap-
proaches in the field of palliative care for affected
patients. In this review we focus on the central
role of two major regulators of bone mass, the
wingless type integration site family members
(WNTs) and the bone morphogenetic proteins
(BMPs), in the development of osteosclerotic
bone metastases.
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Summary

Prostate cancer is the most common cancer
affecting males in the industrialised world and is
the second leading cause of cancer deaths among
men. Median age at diagnosis is 68 years [1].
Non-detectable micro-metastatic disease may be
present in up to 40% of patients [2] while 8–14%
may have visible or symptomatic bone metastases
at diagnosis [3]. Although radical prostatectomy
has a significant impact on survival in localised
disease, up to 30% of patients may need addi-
tional treatment in the form of androgen depriva-
tion therapy (surgical or chemical castration) and
up to 15% in the form of radiotherapy for local
recurrence and previously undetected metastatic
disease [4]. The gold standard for the treatment
of locally advanced or metastatic disease consists
of surgical or chemical castration. After a median
period of 14–30 months the cancer cells may be-
come resistant to castration [5]. During metastatic
progression up to 90% of patients will experience
bone metastases [6]. The median cancer specific
survival time for castration resistant prostate can-
cer may be over 70 months [7]. Most of the pa-
tients with metastatic disease, therefore, will be at
long-term risk for bone metastases with a more
than 40% risk of skeletal complications (e.g., pain,
spinal cord compression, fractures) [8].

A unique feature of prostate cancer is its con-
sistent production of osteosclerotic rather than
osteolytic bone metastases. Approximately 90%
of the bone metastases in prostate cancer appear
as an osteosclerotic clouding on plain x-ray films
with a measurable increase in bone mineral den-
sity at the metastatic site [9]. This increase is a re-
sult of altered bone remodelling (increased bone
resorption and deposition), whose balance has
been tipped towards increased bone deposition
upon invasion of the bone marrow by cancer cells.

Interaction with cancer induced bone remod-
elling is an interesting therapeutic approach in
the palliative care of patients with bone metas-
tases. For example, bisphosphonates, which block
osteoclast activity and thereby bone resorption,
have been shown to be highly effective in the pre-
vention of skeletal complications in prostate can-
cer [10]. They have not however shown to de-
crease overall or cancer specific mortality so far.
Further research is therefore needed on the pre-
vention and treatment of bone metastasis in
prostate cancer. One precondition for the devel-
opment of new therapeutic strategies increasing
bone health in affected patients is an understand-
ing of normal and pathological bone turnover in
general and of the mechanisms leading to os-
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teosclerotic bone metastasis in particular. Molec-
ular pathways responsible for increased bone dep-
osition have been unravelled in hereditary dis-
eases and animal models, as well as in cancer
models, and may lead the way to new therapies.

Here we review the molecular control of two
pathways responsible for increased bone deposi-

tion at the metastatic site, focusing on the role of
wingless type integration site family members
(WNTs) and bone morphogenetic proteins
(BMPs) in prostate cancer.

Physiological and pathological bone remodelling

Physiological bone resorption and formation
occur in a balanced sequence, the replacement of
old bone with new bone maintaining the skele-
ton’s structural integrity throughout adult life
[11]. Osteoblasts, which arise from mesenchymal
progenitor cells in the bone marrow and perios-
teum, are responsible for bone formation, whereas
osteoclasts, which are derived from the mono-
nucleated hematopoietic cell lineage, are responsi-
ble for bone resorption [12, 13].

Mechanical stress, cytokines, central nervous
system stimuli and hormones determine the bone
turnover rate [12, 14]. Osteoblasts play a predom-
inant role in inducing the recruitment and activity
of osteoclasts at the site of bone resorption.
Colony stimulating factor-1 (CSF-1) [15] and re-
ceptor activator of NF-kappaB ligand (RANKL)
[16, 17] are the two main factors produced by os-
teoblasts, each of which is necessary to generate
osteoclasts. Osteoprotegerin (OPG), acts as a
decoy receptor for RANKL and prevents
RANKL from binding to the RANKL receptor
(RANK) on the osteoclast progenitors, thus in-
hibiting osteoclast recruitment and, consequently,
bone resorption [18, 19].Most osteotropic factors,
such as parathyroid hormone (PTH), PTH-re-
lated peptide (PTHrP), 1,25(OH)2-vitamin-D3
and oestrogens, and local cytokines (interleukins),
act indirectly on osteoclast generation by modu-
lating RANKL expression in cells of the os-
teoblast lineage [20, 21]. Systemic factors, such as
PTH, oestrogens, prostaglandins and cytokines,
modulate osteoblast recruitment [22] to fill the
gap created by osteoclasts. Most local mitogenic
factors such as bone morphogenetic proteins

(BMPs), insulin-like growth factor (IGF) and
transforming growth factor β (TGF-β), are em-
bedded within the calcified matrix [23] and re-
leased from the bone matrix and activated during
bone resorption. Stromal cells and their paracrine
cytokine profiles play an important and probably
underestimated role in modulating osteoblast dif-
ferentiation and activity [24, 25].

The profile of hormones and cytokines affect-
ing osteoblast recruitment and function is, there-
fore, strongly dependent on bone turnover and
influenced by the surrounding stroma, stromal
cells and bone marrow cells. Infiltrating cancer
cells interfere with the tight control of bone re-
modelling by changing the cellular environment
and disturbing the autochthon cytokine profile. In
prostate cancer this results in increased bone de-
position. Histological analysis of these metastatic
bone deposits and serological analysis of bone
turnover demonstrates different degrees of an in-
creased and mixed osteolytic and osteosclerotic
activity during the course of the disease [26, 27].
In physiological bone remodelling the activation
of osteoblast-driven bone deposition is dependent
at least in part on the preceding osteolytic activity,
a phenomenon known as coupling [28]. Hence the
increased osteolytic activity in prostate cancer
metastasis may represent a precondition for the
generation of osteosclerotic metastases. Finally,
osteosclerotic metastases are prone to pathologi-
cal fractures due to deposition of bone of the
woven (immature or embryonal) type, which is
much less mechanically competent than the
lamellar (mature) type [29].

Regulation of bone mass: Lessons learned from sclerosing bone disorders

Regulation of bone mass by WNT-signalling
Research on hereditary disorders associated

with increased bone mass has provided consider-
able insight into the regulation of osteoblast activ-
ity and increased net bone deposition [30]. Muta-
tions in sclerostin (SOST) are associated with the
rare familial disorders sclerosteosis and van
Buchem disease [31, 32]. SOST is an inhibitor of
the low-density lipoprotein receptor-related pro-
tein 5 (LRP5), an activating co-receptor of the
transmembrane receptor frizzled, which itself is

activated by WNTs [33]. The WNT family of se-
creted proteins participates in multiple develop-
mental events during embryogenesis and mediates
bone development in the embryo and promotes
bone production in the adult [reviewed in 34, 35].
Canonical WNT-signalling induces nuclear tran-
scription of genes, inducing bone formation by
stabilisation of the otherwise degraded intracellu-
lar β-catenin, which activates the transcription
factor T-cell factor/lymphoid enhancer factor-1
(TCF/LEF-1) [36]. Osteotropic factors induced



222Loss of inhibition over master pathways of bone mass regulation results in osteosclerotic bone metastases in prostate cancer

by WNT signalling include OPG and endothe-
lin-1 (ET-1) [37, 38]. As outlined above, OPG
acts as a decoy receptor of RANKL, thereby pre-
venting the binding of RANKL to RANK and
inhibiting the activation of osteoclast function.
ET-1 stimulates osteoblast proliferation and differ-
entiation and decreases the motility and activity
of osteoclasts [39, 40]. Loss of LRP5 inhibition
by SOSTmutations, therefore, results in increased
bone formation. The same is true for members of
the dickkopf (DKK) family that inhibit LRP5 in a
manner similar to that of SOST and for activating
mutations in the LRP5 gene, which are respon-
sible for the clinical entity of high bone mass
syndrome [41]. More WNT inhibitors and com-
ponents of the WNT signalling pathway may in-
fluence bone mass, but have not yet been linked
to clinical disorders [36].

Regulation of bone mass by BMP-signalling
Camurati-Engelmann disease is a rare clinical

disorder associated with cortical thickening of the
long bones due to activating mutations in the
TGFβ1 gene [42]. TGFβ1 is the paradigmatic
member of the TGFβ-superfamily, a family of se-
creted proteins that includes the three isoforms of
TGFβ (TGFβ1, TGFβ2 and TGFβ3), Activin,
Nodal, Muellerian-inhibiting substance, and the
growth differentiation factor and BMP families.
Fibrodysplasia ossificans progressiva, the most
disabling condition of progressive heterotopic os-
sification in humans, is caused by a recurrent het-
erozygous missense mutation in activin receptor
IA, a BMP receptor [43]. Inactivating mutations
in LEM domain-containing protein 3 (LEMD3),
a protein binding the inner nuclear membrane,
antagonizes TGFβ and BMP signalling, resulting
in osteopoïkilosis characterised by spotted bones
due to osteosclerosis [44]. The largest family of
cytokines in the TGFβ-superfamily is the BMP
family, which has been named for their ability to

induce ectopic bone formation and has been
shown to be essential for bone development in
general and more specifically for osteoblast pro-
liferation and differentiation [45]. Knockouts
of BMP2, 3, 4, 5, 6 and BMP-7 all result in patho-
logical skeletal development [46]. TFG/BMP
signalling is initiated by ligand-dependent homo-
or hetero-dimerisation of membrane-bound re-
ceptor types I and II [47]. The ligand-dependent
receptor-dimerisation of type I and II receptors
activates the intracellular receptor type I kinase,
followed by phosphorylation of intracellular
SMAD-signalling molecules. Phosphorylated
SMADs oligomerise in different combinations
and translocate to the nucleus [48], inducing gene
expression important for bone formation [49].
Extracellular BMP-antagonists (BMPA) sequester
BMPs in the extracellular space by direct associa-
tion with BMPs. Antagonism of BMP activity by
the BMPAs Noggin and Chordin is critical for
embryonic chondro-osteogenesis and joint for-
mation [50, 51]. Osteoblast-targeted over-expres-
sion of Noggin [52] and the BMPA Gremlin [53]
results in osteopenia due to impaired osteoblast
recruitment and function, indicating that extra-
cellular control of BMPs is also essential in adult
life in maintaining the balance between bone re-
sorption and formation in bone remodelling. Syn-
thesis and secretion of BMPAs is BMP-depen-
dent, showing that a perfect balance between
BMPs and BMPAs is necessary to achieve optimal
bone mass [54].

In conclusion, WNT and TGF/BMP signal-
ling seem to play an important role in the reg-
ulation of bone mass, as evidenced by genetic
diseases and animal models. Interestingly, both
pathways are able to induce the runt-related tran-
scription factor 2 (RUNX2), which is essential for
bone formation [55], indicating an important and
converging role in regulating bone mass.

Mechanisms of osteosclerotic bone metastasis

Contribution of WNT-signalling to osteo-
sclerotic bone metastasis

The importance of WNTs and WNT in-
hibitors secreted by tumour cells was first iden-
tified in multiple myeloma [56], a disease that
causes severe osteolysis with both enhanced bone
resorption and suppressed bone formation. One
of the factors responsible for this enhanced oste-
olytic activity was later identified as theWNT-in-
hibitor DKK-1 [56]. DKK-1 is also upregulated in
localised prostate cancer but decreases later in
metastatic disease [57]. Prostate cancer cells that
induce osteolytic experimental bone metastases
maintain expression of high levels of DKK-1,
whereas prostate cancer cells inducing osteoscle-
rotic metastases do not [58]. Osteolytic disease
and metastases expressing high levels of DKK-1

have a worse clinical course than those that do not
[57]. It is possible that DKK-1 is involved in the
initial and increased osteolytic activity that en-
ables the osteosclerotic activity (coupling) of os-
teoblasts, whereas at a later stage the loss of
DKK-1 expression promotes formation of os-
teosclerotic bone metastases by unopposed activa-
tion of the WNT-signalling pathway [59]. SOST,
the other inhibitor ofWNT signalling mentioned
above, has a not yet defined role in bone metas-
tases. Measurements of SOST expression in
prostate cancer cell lines did not, however, show a
difference between osteolytic and osteosclerotic
cancer cells [58]. In addition to the unopposed
WNT signalling by loss of DKK-1, increased lev-
els ofWNT and β-catenin have been measured in
clinical samples of prostate cancer and have been
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associated with aggressive cancer behaviour [60,
61]. Moreover, blocking of WNT-signalling in a
cell line that induced experimental osteosclerotic
bone metastases converted that cell line into a
highly osteolytic one [59], demonstrating that
WNT-signalling plays an important role in the
formation of osteosclerotic bone metastases. As
outlined above, the canonical WNT-signalling
pathway induces the transcription of OPG and
ET-1, both factors associated with increased bone
mass. Elevated levels of OPG in the serum of
prostate cancer patients are indicative of prostate
cancer bone metastases [62]. OPG is expressed at
high levels in prostate cancer osteoblastic metas-
tasis [63] and overexpression of OPG in prostate
cancer cells results in increased bone volume
when these cells are grown in the bone [64].

ET-1 appears to play a similar role in the gen-
eration of osteosclerotic bone metastases, as evi-
denced by its experimental inhibition of DKK-1
secretion [65]. Its causal role in evoking an os-
teosclerotic reaction in bone metastasis of mam-
mary cancer is well recognised [66], and a similar
role has been postulated in prostate cancer [39,
67].

Contribution of BMP-signalling to osteoscle-
rotic bone metastasis

A systematic work-up of the expression of
members of the TGFβ-superfamily in prostate
cancer and in prostate cancer cell lines that in-
duce experimental osteolytic and osteosclerotic
bone metastases was recently published by our
laboratory [58, 68]. Prostate cancer cell lines,
either osteolytic or osteosclerotic, expressed at
least one sort of BMPs. Consistent with other re-
ports [69], BMP6 was predominantely expressed
by osteosclerotic prostate cancer cell lines, further
supporting a role for BMP6 in the development

of osteosclerotic bone metastases in prostate can-
cer. The most striking finding was the restricted
expression of the BMPA Noggin to cell lines in-
ducing osteolytic bone metastases. Re-expression
of Noggin in prostate cancer cells inducing os-
teosclerotic experimental bone metastases signifi-
cantly reduced the osteosclerotic capacity of these
cells and normalised the bone structural parame-
ters in the bone metastases to normal control val-
ues conformable with a return to physiological
bone remodelling. As a consequence, in this ex-
perimental system the stimulation by BMPs de-
rived either from cancer cells or from the bone
microenvironment resulted in an exaggerated os-
teoblast response only when not antagonised by
the BMPA Noggin. Moreover, Noggin re-expres-
sion reduced the number of osteoclasts at the
bone metastatic site. This study was the first
to demonstrate that the unopposed BMP signal
contributes to the osteosclerotic phenotype of
prostate cancer metastases in vivo.

To sum up, loss of the inhibitors DKK-1 and
Noggin promotes an unsuppressed WNT and
BMP signal at the bone metastatic site and proba-
bly contributes fundamentally to the formation of
osteosclerotic bone metastasis in prostate cancer.
Expression of Noggin in experimental osteoscle-
rotic bone metastasis represses the osteosclerotic
response irrespective of which signalling pathway
is neutralised. Thus, it is possible that none of
these signalling pathways is sufficient per se to
evoke an osteosclerotic response, but rather they
must act in concert. This hypothesis is further
substantiated by a recent experimental study
demonstrating that the WNT and BMP sig-
nalling pathways act together in provoking the
osteosclerotic reaction of prostate cancer bone
metastases [70].

Therapeutic implications of WNT and BMP signalling

Bones affected by either osteolytic or os-
teosclerotic metastasis are more prone to pain and
pathological fractures. The demonstrated role of
WNT signalling in bone and its involvement in
the response of bone to prostate cancer cells
prompts investigation of novel drugs targeting the
WNT pathway for successful prevention of skele-
tal complications.The inhibitory effect of Noggin
on the osteoblast and osteoclast response in bone
metastatic lesions may reduce the incidence of
pathological bone fractures. Hence, inhibiting
BMP signalling by a substance similar to Noggin
could prove to be useful as an adjuvant drug in the
treatment of metastasis-induced skeletal compli-
cations.

Although basic research has brought us closer
to an understanding of the mechanisms of cancer-
induced bone alterations, the therapeutic implica-

tions are still evolving. Potential agents, such as
the ETAR antagonist atrasentan, are not yet
showing conclusive results in clinical phase III tri-
als [71, 72]. More substances are being tested, but
only a few attack the molecular pathways de-
scribed above [73]. Continued research is clearly
warranted and ultimately needed for patients suf-
fering from prostate cancer bone metastasis.
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