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Body weight homeostasis is regulated by cen-
tral and peripheral mechanisms, in which cyto-
kines appear to have an important role.The circu-
lating levels of the cytokines interleukin 1 (IL-1)
and interleukin 18 (IL-18), and of inflammatory
mediators such as prostaglandin E2 (PGE2),
amongst others, are elevated in obese individuals.
The low-grade inflammation associated with obe-
sity may contribute to the development of insulin
resistance, impaired glucose tolerance and type 2

diabetes. This review highlights results of studies
in mice which indicate important roles for these
proinflammatory cytokines during the develop-
ment of obesity and insulin resistance, and in the
treatment of type 2 diabetes.
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Summary

During the past three decades the United
States and Western Europe, and also Asian coun-
tries, have witnessed a dramatic increase in the
prevalence of obesity. Currently almost two-
thirds of American adults (66.3%) are overweight;
of these 32.4% are obese [1–3]. Obesity repre-
sents a major risk factor for diseases including di-
abetes, atherosclerosis and cardiovascular disease
in which inflammation acts as a major driver in
pathogenesis. Obesity is primarily considered a
disorder of energy balance, and it was recently
suggested that some forms of obesity are associ-
ated with chronic mild inflammation [4]. Many
cytokines are systemically or locally elevated in
obesity: they include interleukin 18 (IL-18) [5, 6],
interleukin 1 (IL-1) [7, 8], interleukin 6 (IL-6) [9,
10], tumour necrosis factor alpha (TNF) [11] and
leptin [12]. Other inflammatory mediators also
elevated in obesity include prostaglandin E2
(PGE2) [13] and C-reactive protein (CRP) [14,
15]. In this review we specifically focus on IL-1,
IL-18 and PGE2, since both cytokines are known
to activate the same transduction pathways but to
have different actions on PGE2.

The induction and subsequent overproduc-
tion of proinflammatory cytokines, such as IL-1,

TNF, and IL-6, is accompanied by increased pro-
duction of their endogenous inhibitors, binding
proteins and soluble decoy receptors [16–19]. For
example, interleukin 1 receptor antagonist (IL-
1Ra) is an anti-inflammatory cytokine that is also
produced by white adipose tissue [20] and the
pancreas [21] and that binds to the Interleukin 1
receptor (IL-1R) in competition with the proin-
flammatory cytokine interleukin 1 (IL-1) [22, 23].
The relative occupancy of the IL-1R1-IL-1RAcP
receptor complex with IL-1 agonist or with IL-
1Ra determines whether the inflammatory sig-
nalling is “on” or “silenced” respectively [24, 25].
Systemic levels of the naturally occurring IL-1Ra
have been shown to be elevated 3-8 fold in obese
humans [20, 26, 27] and it has been suggested that
this represents a protective response to the rise of
the cytotoxic IL-1b in obesity. The critical bal-
ance between IL-1 agonists (IL-1a, cell bound
and IL-1b, circulating) and IL-1Ra also plays an
important role in susceptibility to and severity of
many acute and chronic diseases, including obe-
sity and diabetes [28–30], psoriasis [31], acute
phase syndrome sepsis [32], fever [33–35],
seizures [36] and stroke [37].

Many animal models have been developed
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with the aim of studying the mechanisms by
which obesity may develop into insulin resistance
and eventually into type 2 diabetes, including the
role of inflammation in this progression. The
severity of the diabetic phenotype in mice is sen-
sitive to the genetic background [38, 39], and the
inflammatory responsiveness of different mice
strains varies widely [40]. Although glucose toler-
ance and insulin resistance can be modelled in

mice, they do not develop a diabetic state that
truly reflects the severity of the human diabetic
condition. Glucose tolerance and insulin resis-
tance tests are performed routinely in mice as an
indicator of the development of diabetic pheno-
types, but the reproducibility in these tests [41,
42] varies widely. With these caveats we proceed
to summarise the present data.
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Interleukin-1 signalling

IL-1 signalling involves the type I IL-1R (IL-
1R1), a Toll-like receptor [43, 44] that het-
erodimerises with the IL-1R accessory protein
(IL-1RAcP) (figure 1) [45, 46]. There is a second
IL-1R called IL-1R2, which is a soluble decoy re-
ceptor that is not thought to participate in sig-
nalling [47, 48]. Interleukin 1 beta (IL-1b) binds
to the IL-1R1/IL-1R1AcP heterodimer which
then initiates the signalling cascade resulting in
the translocation of the transcription factor nu-
clear factor-kappa B (NF-kB) into the nucleus,
where it induces the transcription of pro- and

anti-inflammatory genes including inducible ni-
tric oxide synthetase (iNOS), interleukin 6 (IL-6),
IL-1Ra and cyclooxygenase-2 (COX-2), [49–51].
COX-2 catalyses the conversion of arachidonic
acid (AA) to prostaglandin H2 (PGH2). PGH2 is
converted into prostaglandin E2 (PGE2) by termi-
nal PGE synthase (PGES). PGE2 signals through
four different G-protein coupled receptors,
EP1R–EP4R [52, 53], each of which has multiple
splice variants with different signalling properties
[54].
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Figure 1

An overview of interleukin-1 NF-kB-
dependent signalling. il-1b binds to
the il-1R1/il-1R1AcP heterodimer and
the adapter protein myeloid differenti-
ation primary response gene 88
(Myd88) is recruited to the complex
[117].The bound Myd88 recruits il-1R-
associated kinase-4 (iRAk4), which ini-
tiates the recruitment ofToll-interact-
ing protein (Tollip) / il-1R-associated
kinase-1 (iRAk1) complexes [118].
iRAk4 phosphorylates iRAk1 and
TNF-associated factor 6 (TRAF6) forms
a complex with iRAk1 that subse-
quently associates with and activates
theTGF-activated kinase 1 (TAk1). dis-
sociation of the iRAk-1/Traf6 complex
from the il-1R and subsequent ubiqui-
tinylation ofTab1 leads to the activa-
tion of the kinaseTAk1, resulting in
the phosphorylation of ikB kinase
(ikk) [119]. Activation of the ikk com-
plex leads to ubiquitination and pro-
teasomal degradation of the in-
hibitory proteins ikB, and thus NF-kB
transcription factor translocates into
the nucleus where it induces the tran-
scription of pro- and anti-inflamma-
tory genes including inducible nitric
oxide synthetase (iNOS), interleukin 6
(il-6), il-1Ra and cyclooxygenase-2
(COX-2) [49-51].
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Knockout mice have been essential in deter-
mining the role of IL-1 signalling in inflamma-
tion as well as the metabolic effects of a loss of
IL-1 signalling (see table 1). IL-1R1 deficient mice
(IL1-R1–/–) on a C57BL/6 background fed a nor-
mal chow diet exhibit mild late-onset obesity
from approximately 5–6 months of age. Their in-
creased body weight is due to increased fat mass
and is accompanied by insulin resistance and de-
creased glucose tolerance [55]. IL-1b deficient
mice fed normal chow have been reported not to
develop obesity (up to 8 months) [56]. However,
the combined deficiency of both IL-1b and IL-6
(IL-1b–/–, IL-6–/–) in double transgenic mice on
a C57BL/6 background fed normal chow leads
to early onset obesity at 10 weeks of age [56]
while deficiency in IL-6 alone (IL-6–/–), on a

C57BL/6 background leads to late-onset obesity
by 6 months of age [57].These results indicate that
IL-1 and IL-6 are both involved in the regulation
of body fat in what appears to be a redundant
manner in young mice. Conversely, IL1-Ra defi-
cient mice (IL1-Ra–/–) have been shown to exhibit
a leaner phenotype compared to wildtype (WT)
mice [58, 59], further supporting the idea that an
intact IL-1 system is important for maintaining
energy homeostasis. It should be noted that IL-
1Ra–/– mice have chronic inflammation and that
IL-1, which occupies the IL-1R1 in the absence
of IL-1ra, suppresses appetite acutely as described
in IL-1 induced “sickness syndrome” [60]. In ad-
dition, the lean phenotype may reflect aberrant
lipid metabolism in these transgenic mice [58].
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Genotype Phenotype Reference

IL-1R1–/– Obesity at 5–6 mths, insulin resistance and glucose intolerance in mice on a C57BL/6 background. [55]

IL-1b–/– Normal weight up to at least 8 mths [56, 121]

IL-1a–/– Mice develop normally [122]

IL-1/a/b–/– Mice develop normally [122]

IL-6–/– Obesity at 6 mths, insulin resistant and glucose intolerant [57]

IL-1b–/– / IL-6–/– Obesity at 10 wks [56]

IL-1Ra–/– Lean phenotype due to abnormal lipid metabolism. Increased insulin sensitivity. [58, 59]

IL-18–/– Obese at 6 mths, insulin resistant and glucose intolerant [87, 123]

COX-2–/– COX-2 +/– mice, but not COX-1–/– or COX-2 –/– mice have been shown to develop obesity.
Although COX-2 is an important enzyme catalysing PGE2 synthesis, altered PGE2 signalling
has not been implicated in the development of obesity in these mice. [66]

EP3R–/– Obese by 5 mths, insulin resistant and glucose intolerant [74]

Table 1

Cytokine, inflamma-
tory signalling
deficient mice
(on a C57Bl/6 genetic
background) which
exhibit alterations
in body weight
homeostasis on
normal chow.

Knockout mice in studies on IL-1 signalling

Therapeutic potential of blockage of IL-1 signalling in the treatment
of type 2 diabetes

A recent study by Larsen et al. [28] showed
that blockade of the IL-1R with human recombi-
nant IL-1Ra (Anakinra™) improved glycaemic
control and beta-cell secretory function and re-
duced markers of systemic inflammation in obese
and non-obese patients with established type 2 di-
abetes [28]. At 13 weeks, in the Anakinra™ treated
group, the glycated haemoglobin level was 0.46
percentage points lower than in the placebo group
(P = 0.03); C-peptide secretion was enhanced (P =
0.05), and there were reductions in the ratio of
proinsulin to insulin (P = 0.005) and in levels of
IL-6 (P <0.001) and C-reactive protein (P =
0.002). A similar study in diet-induced obese mice
also demonstrated the pancreas-protective effects
of IL-1Ra administration, and presented evidence
on improved beta cell survival and function with
improved glucose tolerance [30].

An alternative therapeutic strategy for protec-
tion of the pancreas against the proinflammatory
cytotoxic action of IL-1 in obesity involves the use
of a high affinity monoclonal antibody to IL-1b
[29]. Endogenous IL-1b is thereby sequestered in
an antigen-antibody complex, shifting the balance
at IL-1R in favour of the antagonist IL-1Ra. The
strategy of immunoneutralisation of IL-1b by a
high-affinity antibody represents an effective ap-
proach to improvement of glucose control in obe-
sity in which the agonist is removed from the
IL-1 receptor rather than relying on a sufficient ex-
cess dose of the lower affinity IL-1Ra antagonist
to competitively block IL-1b-mediated occupancy
and activity. Approximately a 20–100-fold excess
of IL1-Ra over IL-1b is necessary to block the ef-
fects of IL-1b on pancreatic islets [8, 61]. As obe-
sity develops, IL-1b is elevated in hyperglycaemic
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IL-1b stimulates the production of prosta-
glandin E2 (PGE2) primarily by transcriptional-
ly up-regulating COX-2 through the action of
the transcription factor NF-kB (figure 2) [64, 65].
Heterozygous COX-2+/– mice, but not COX-1–/–
or COX-2–/– mice have been shown to develop
obesity [66]. Although COX-2 is an important en-
zyme catalysing PGE2 synthesis, altered PGE2 si-
gnalling has not been implicated in the develop-
ment of obesity in these mice. However, PGE2
has been implicated in human obesity, in which el-
evated circulating levels of PGE2 have been ob-
served [13]. PGE2 is a lipid mediator with effects
in the CNS including activation of the hypothala-
mic-pituitary-adrenal (HPA) axis [67] and febrile
response [68]. PGE2 signalling is also an impor-
tant component of inflammation [69–71]. PGE2
has also been shown to inhibit lipolysis in WAT
and stimulate the secretion of leptin, suggesting
that PGE2 signalling is important for body weight
homeostasis [72]. PGE2 can signal through four
different G-protein coupled receptors, EP1R–
EP4R [52, 53]. The EP subtypes exhibit differ-
ences in signal transduction, tissue localisationand
regulation of expression (for review see [73]).
Mice that lack the prostaglandin receptor EP3R
develop an obese phenotype and have a signifi-
cantly higher body weight than WT littermates
from 10 weeks of age when fed normal chow [74].
By 30 weeks of age, EP3-deficient mice weigh on
average >30% more than their WT littermates.
Obesity in EP3R–/– mice is characterised by ele-
vated leptin and insulin levels, increased abdomi-
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beta cells and thus very large quantities of IL-1Ra
are necessary to compensate for this rise [8, 21].

The IL-1b antibody has recently been show
to have significant therapeutic effects in the pre-
vention of diabetes-related traits by improving
glucose control and beta cell function in hyper-
glycaemic mice with diet-induced obesity [29].
After 13 weeks of treatment, the IL-1b antibody-
treated group showed reduced glycated haemo-
globin (*P = 0.049), reduced serum levels of pro-
insulin (*P = 0.015), reduced levels of insulin and
smaller islet size (*P = 1.65E-13) relative to the
control antibody-treated group. Neutralisation of
IL-1b also significantly reduced serum amyloid A
(SAA), indicating inflammation-induced acute
phase response (*P = 0.024). While there was no
improvement in weight gain, a significant im-
provement of glycaemic control and of beta cell
function is achieved by this pharmacological
treatment, which may slow/prevent disease pro-
gression in type 2 diabetes. The mouse studies
also provided insights into the cellular and molec-
ular mechanisms involved in IL-1b cytotoxicity,
allowing morphological examination of the pan-

creatic islet sizes and other parameters not easily
followed in human patients in the absence of
biopsy [28].

IL-1a is mostly cell-bound, but it potentially
contributes to IL-1R1-mediated cytotoxicity in
the pancreas [62]. Osborn et al. [29], using an IL-
1b selective antibody, therefore showed that sig-
nificant improvement of glycaemic control can be
achieved by neutralisation of the soluble IL-1b
alone, without blocking the action of IL-1a. The
results suggest that the majority of IL-1R-
mediated cytotoxic effects in the pancreas involve
IL-1b. Because IL-1b is also a key mediator of im-
paired function and destruction of pancreatic beta
cells during the development of type 1 diabetes [8,
63], an anti-IL-1b antibody may have therapeutic
potential not only in the treatment of type 2 dia-
betes, but also in other forms of diabetes where
tight glucose control is essential to prevent induc-
tion of IL-1b and further beta cell destruction.
The collective results validate the therapeutic po-
tential of blocking IL-1 signalling for the treat-
ment of diabetes.

Figure 2

interleukin-1b induction of prostaglandin e2 signalling. il-1b
induces the production of prostaglandin e2 (PGe2) through
the action of its signalling receptor heterodimer il-1R1/il-
1R1AcP and the subsequent activation of NF-kB and induc-
tion of COX-2. COX-2 is highly inducible, whereas COX-1 is
ubiquitously expressed [120]. COX-2 catalyses the conver-
sion of the membrane lipid arachidonic acid (AA) to
prostaglandin H2 (PGH2). PGH2 is converted into
prostaglandin e2 (PGe2) by terminal PGe synthase (PGeS).
PGe2 signals through four different G-protein coupled
receptors, eP1R–eP4R, which occur in several isoforms
[52, 53].
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IL-1b is closely related to and shares a very
similar three dimensional protein structure with
the cytokine interleukin 18 (IL-18) [76, 77]. Both
the IL-1 receptor and IL-18 receptor belong to
the Toll/IL-1R (TIR) superfamily which is de-
fined by a common intracellular TIR domain, in-
volved in the initiation of signalling [78]. The IL-
18 receptor (IL-18R) complex is composed of the
interleukin 18 receptor (IL-18R) to which IL-18
binds [77], and by the IL-18 receptor accessory
protein (IL-18RAcP). The IL-18 binding protein
(IL-18BP) is a constitutively secreted protein
which binds to IL-18 and functions as a decoy to
prevent the initiation of signal transduction at the
IL-18 receptor [79]. Transgenic mice that express
the human form of the IL-18BP isoform a (IL-
18BP-Tg), which binds with high affinity to IL-18
[80], show that high levels of IL-18BP effectively
neutralise IL-18 and can protect against inflam-
matory stimuli.

In addition to structural features, IL-18 and
IL-1 share some common signalling pathways

(figure 3). Binding of IL-18 to the IL-18R is fol-
lowed by recruitment of the IL-1 receptor activat-
ing kinase (IRAK) [81, 82] via the adapter MyD88
[83] in a similar way to that described in figure 1,
culminating in the translocation of NF-kB to the
nucleus [82, 84].

Engagement of the IL-18R complex also acti-
vates the mitogen-activated protein kinase (MAPK)
p38, JNK and ERK through both IRAK and
STAT3 [85–89]. It is noteworthy that while IL-18
and IL-1 share some common signalling path-
ways, their effects on COX-2 induction are differ-
ent. IL-18, unlike IL-1, does not induce COX-2
and PGE2 production in the cell types studied.
PGE2 concentration can however be affected by
the Interleukin 18 binding protein (IL-18BP), as
in vitro experiments have shown [90].

IL-18 is implicated in the pathogenesis of sev-
eral diseases including atherosclerosis, ischaemic
heart diseases, infection, cancer [91–95], and more
recently a novel function for IL-18 in the control
of energy homeostasis has also been described [87,
96]. Serum levels of IL-18 directly correlate with
body mass index, adiposity and insulin resistance,
and circulating levels of IL-18 are elevated in obe-
sity [5, 6, 97]. Fat-resident monocyte/macrophage
lineage cells are major sources of IL-18 [4], and
adipocytes from obese humans secrete three times
more IL-18 than those from lean donors [98].
Subcutaneous adipose tissue IL-18 mRNA is also
elevated in human obesity, correlating with in-
sulin resistance [99]. The results suggest an
adipocytokine-like action of IL-18 in obesity.

Studies in mice which lack IL-18 (IL18–/–) or
the a component of its receptor (IL18R–/–) have
revealed that IL-18 signalling modulates food in-
take, metabolism, and adiposity during adulthood
[87, 96]. Both male [87] and female [96] IL18–/–
mice develop obesity by approximately 6 months
of age when fed normal chow. IL-18 administered
centrally or peripherally suppresses appetite, feed
efficiency, and weight regain in food-deprived
C57BL/6J mice in both sexes [96] without induc-
ing fever or malaise-like behaviour such as the
“sickness syndrome” caused by IL-1 (Dantzer
2001). Furthermore, IL-18 deficiency leads to hy-
perphagia before the onset of overweight, de-
creased energy expenditure in females and in-
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nal and subcutaneous fat and increased liver
weight. EP3R–/– mice exhibit increased motor ac-
tivity during the light cycle but this is not suffi-
cient to offset their increased feeding frequency
during this phase, leading to obesity. PGE2 has
been reported to be a somnogenic agent [75], and
it has therefore been suggested that EP3R defi-
cient mice do not stabilise sleep and may wake up
more easily. This sleep deficit may explain why

EP3R-deficient mice exhibit increased food con-
sumption during the light cycle. These observa-
tions expand the roles of prostaglandin E2 sig-
nalling in metabolic regulation beyond the re-
ported stimulation of leptin release from adipose
tissue, to involve CNS actions mediated by EP3R
in feeding behaviour and the regulation of sleep
architecture.
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Figure 3

il-18 activation of cell signalling. Binding of il-18 to the
il-18R recruits the il-1 receptor activating kinase (iRAk) via
the adapter protein myd88. iRAk autophosphorylates and
dissociates from the receptor complex, subsequently inter-
acting withTNFR-associated factor 6 (TRAF6) which relays
the signal to the ikb kinases (ikks) leading to the release
and translocation to the nucleus of NF-kb. Alternatively il-18
binding to the il-18R complex can activate the mitogen-acti-
vated protein kinase (MAPk) p38, JNk and eRk through
both iRAk and STAT3.
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creased respiratory exchange ratios (volume of
carbon dioxide production [VCO2]/volume of
oxygen consumption [VO2]) in mutants of both
sexes. Adult IL-18–/–mice gained 2–3 times more
weight than WT mice per unit energy consumed
of low or high fat diet. IL-18–/–mice showed 2–3
times greater whole-body adiposity than that of
WT with the most significant differences in go-

nadal, mesenteric, and inguinal depots [96]. To-
gether the data suggest that endogenous IL-18
signalling modulates food intake, metabolism and
adiposity during adulthood in male and female
mice in a manner that opposes positive energy
balance.The results also indicate the possibility of
both central and peripheral targets for IL-18 to
control energy homeostasis.
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Tissue Effect Reference

Brain Acute effects (fever and anorexia) mediator of leptin action [22, 123]

Fat Lipolysis [124, 125]

Pancreas Insulin secretion and beta cell apoptosis [115, 126–128]

Liver Induces IL-1Ra [20]

Table 2

The il-1 system has
important roles in the
brain and periphery.

Perspective

Cytokine receptors are expressed on a wide
range of peripheral cell types in different tissues,
such as, among others, white adipose tissue
(WAT) [100, 101], pancreas [8, 102] and muscle
[103] (see table 2).WAT produces both IL-1b and
IL-1Ra and expresses IL-1R1, IL-1R2, and IL-
1R1AcP, indicating that adipose tissue is capable
of functional IL-1 signalling [16, 20, 26].WAT ex-
pression of IL-1Ra and IL-1R1 is up-regulated in
obesity, providing further evidence in favour of
dysregulated IL-1 signalling in obesity [20]. How-
ever, cytokine receptors have also been found to
be expressed on specific neuronal populations
such as hippocampal neurons and neurosecretory
cells in the hypothalamus [104–106], as well as on
microglia and astrocytes [107–109]. Due to the
widespread expression of cytokine receptors in
both the brain and the periphery, it is difficult to
pinpoint where cytokines such as IL-1b or IL-18
exert their effects on body weight. Since these
obese, cytokine-deficient mice lack cytokine sig-
nalling both in the brain and in the periphery, it is
impossible to determine the specific sites of action
using the transgenic tools currently available.
However, the field is still young, and with the de-
velopment of tissue-specific knockouts and di-
rected viral vectors [110–112] it should be possi-
ble in future studies to differentiate the central
and peripheral effects of these cytokines on body
weight homeostasis.

The mouse studies quoted here present a par-
adox, since in general pro-inflammatory cytokine-
deficient mice are obese (e.g. IL-1R–/–, EP3–/–, IL-
18–/–), but elevation of these cytokines is observed
systemically in obesity. A possible explanation is
that the elevated levels of inflammatory mediators
could lead to a state of resistance analogous to that
which occurs with the adipocytokine leptin, where
there is actually less inflammatory signalling in
obese individuals despite elevated circulating cy-
tokine levels. The lean phenotype of IL-1Ra–/–
mice needs to be mentioned for the sake of com-
pleteness, but it is noteworthy that these animals

are very sick and multiple processes may account
for their inability to gain weight similarly to WT
mice littermates.

With the rapid expansion of obesity research
many genetic factors involved in obesity that con-
tribute to the phenotype are being described,
along with the important social factors.While the
influence of cytokines certainly pales in compari-
son to leptin [113, 114], cytokines may be impor-
tant in contributing to obesity, which affects the
vast majority of people with high BMIs. The
recognition of obesity as a risk factor for type 2 di-
abetes also increases the importance of under-
standing the contribution of cytokines in the tran-
sition from obesity to type 2 diabetes . In this con-
text, the cytotoxicity of IL-1 receptor agonist for
the pancreatic beta cells and the inhibitory effects
on the beta cells’ ability to respond to elevated
glucose become important [115].While anti-IL-1
therapies may not affect body weight, they may
protect the pancreatic beta cells that are stressed
in obese individuals by increased insulin demand
and elevated circulating pro-inflammatory cy-
tokines.

Since IL-1ra (Anakinra™) is already approved
for the rheumatoid arthritis indication and anti-
IL-1b antibodies are in clinical trials, future clini-
cal trials to protect the pancreas in obese subjects
will rapidly follow. The consequences of diabetes
are so devastating that if anti-IL-1 therapy is
successful in preventing or slowing conversion of
obesity to type 2 diabetes it is likely that such
therapy will be widely used, especially as the anti-
IL-1 biologicals appear to be safe.

The selective suppression of EP3R-mediated
PGE2 signalling has not been studied in humans,
and the widely used COX-1 and COX-2 in-
hibitors reduce the PGE2 agonist concentration
at all prostanoid receptor subtypes simultane-
ously. As soon as a selective, CNS active EP3R an-
tagonist becomes available, it will certainly be put
to the proof of concept studies in obesity.
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Transgenic IL-18BP mice have shown that
high levels of IL-18BP effectively neutralise IL-
18 and can protect against inflammatory stimuli
[80]. These transgenic mouse studies have
prompted further investigation into the effects of
recombinant IL18-BP (Tadekinig-a®) which is
currently in phase I clinical trials for Crohn’s dis-
ease and rheumatoid arthritis [116]. Preclinical
studies suggest that the IL-18 system may affect
body weight homeostasis at several levels, but
pharmacological exploitation of the appetite- and
energy metabolism-suppressing effects of IL-18
signalling awaits clinical experimentation on
obese and diabetic subjects.

These mouse studies highlight potential new
therapeutic targets in the field of obesity and dia-
betes. The paradoxical findings that pro-inflam-
matory cytokine-deficient mice are generally

obese, while systemic elevation of these cytokines
is observed in obesity, suggests that disruption of
the homeostatic balance of cytokines in either di-
rection is detrimental, and that moderate inhibi-
tion of pro-inflammatory mediators using phar-
macological inhibitors is likely to have therapeu-
tic effects.
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