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There is increasing interest in the search for
therapeutic options for diseases and injuries of the
central nervous system (CNS), for which cur-
rently no effective treatment strategies are avail-
able. Replacement of damaged cells and restora-
tion of function can be accomplished by trans-
plantation of cells derived from different sources,
such as human foetal tissue, genetically modified
cell lines, embryonic or somatic stem cells. Pre-
clinical and clinical trials have shown promising
results in neurodegenerative disorders, like
Parkinson’s and Huntington’s disease, but also is-
chaemic stroke, intracerebral haemorrhage, de-
myelinating disorders, epilepsy and traumatic le-
sions of the brain and spinal cord. Other studies

have focused on finding new ways to activate and
direct endogenous repair mechanisms in the
CNS, eg, by exposure to specific neuronal growth
factors or by inactivating inhibitory molecules.
Neuroprotective drugs may offer an additional
tool for improving neuronal survival in acute or
chronic CNS diseases. Importantly however, a
number of scientific issues need to be addressed in
order to permit the introduction of these experi-
mental techniques in the wider clinical setting. 
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List of Abbreviations

AAV adeno-associated virus

AD Alzheimer’s disease

ALS amyotrophic lateral sclerosis

APP amyloid precursor protein

ARTN artemin

beta-Gal beta-galactosidase

BDNF brain-derived neurotrophic factor

BFGF basic fibroblast growth factor

BMP bone morphogenetic protein

CDNF conserved dopamine neurotrophic factor

CNTF Ciliary neurotrophic factor

CK creatine kinase

CNS central nervous system

EGF epidermal growth factor

ES embryonic stem cell

FDG fluorodopa deoxyglucose

FGF fibroblast growth factor

GABA gamma-aminobutyric acid

GDNF glial cell line-derived neurotrophic factor

GFL GDNF family ligand

GFP green fluorescent protein

HD Huntington’s disease

ICH intracerebral haemorrhage

IGF insulin-like growth factor

IL interleukin

MS multiple sclerosis

NGF nerve growth factor

NT neurotrophin

NTN neurturin

OEC olfactory ensheathing cell

PCr phosphocreatine

PERV porcine endogenous retrovirus

PET positron emission tomography

PD Parkinson’s disease

PSP persephin

SOD1 superoxid dismutase 1

SVZ subventricular zone

SV40 simian virus 40

TGF transforming growth factor

TH tyrosine hydroxylase

VM vental mesencephalon

155-172 Andres 10387.qxp  7.3.2008  10:24 Uhr  Seite 155



The diseased or damaged brain has limited
regenerative capacity, which is mainly of a func-
tional and not of a structural nature. There are a
number of neurodegenerative processes, neu-
rovascular pathologies and traumatic lesions of
the central nervous system (CNS) for which there
are currently no effective treatment options avail-
able. These are usually devastating diseases with a
major impact on quality of life, showing a chronic
course and are associated with high socioeco-
nomic costs. Due to increasing life expectancy
and a higher prevalence of neurodegenerative and
neurovascular pathologies in the elderly popula-
tion, these disorders will become even more
 important for our society in the future and there
is need for the development of new, adequate
treatment options.

To develop strategies for repair of the im-
paired brain and spinal cord, extensive research
efforts have been implemented particularly dur-
ing the last two decades. Effective in vitro and in
vivo models have been developed in order to
replicate the core pathology of the underlying
disorders. The concept of neural transplantation
has evolved as an instrument for replacing the
neurons lost in degenerative processes, trauma,
and vascular lesions, as well as for replacing glial
cells in the context of demyelinating lesions.
Major advances in basic research have enabled
first clinical trials, which have proved that this ap-

proach is feasible and effective. In addition,
strategies have been developed to influence en-
dogenous stem cell proliferation, migration and
differentiation in the brain.

Nevertheless, there are still a number of
major limitations to overcome, such as lack of
 sufficient and well-characterised donor tissue,
suboptimal survival and functional integration of
transplanted cells, the presence of side effects, and
the missing knowledge on factors influencing mi-
gration, growth and differentiation of trans-
planted stem and progenitor cells. In addition,
and importantly also a number of ethical issues
needs to be addressed. In this article we discuss
the possibilities and limitations in cell replace-
ment strategies and also address current research
in restorative neuroscience. Notably, the current
review deals with a rather specific part of current
plasticity research and does not cover the entire
field of neuronal plasticity, like for example,
mechanisms of synaptic plasticity [1, 2], activity
dependent modulation of axonal motility [3], ef-
fects of dietary restriction [4], potential of envi-
ronmental enrichment [5], the impact of adaptive
learning for rehabilitation [6], assessment of
structural plasticity by transcranial magnetic
stimulation [7], multimodal imaging of brain re-
organisation [8], and the importance of nuclear
medicine imaging in rehabilitative treatment
evaluation [9].
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Introduction

Neural transplantation for Parkinson’s and Huntington’s disease

Allogenic neuronal tissue harvested within
certain developmental windows has been reported
to survive, extend axons and make connections
with the surrounding host brain after transplanta-
tion. Parkinson’s disease (PD) and Huntington’s
disease (HD), common neurodegenerative disor-
ders with relatively selective loss of certain sub-
populations of neurons, have received the most
 attention with respect to therapies designed to
 replace the missing neurons [10, 11]. While there
are effective symptomatic treatments for PD, the

applied drugs become less effective with the pro-
gression of the disease and produce significant
side effects. In HD, there are at present only few
symptomatic treatments available, which are most
effective in controlling the psychiatric abnormali-
ties associated with this disease. Both PD and HD
can be mimicked in experimental in vitro and in
vivo models to replicate the underlying pathologi-
cal processes permitting study of cell replacement
strategies under laboratory conditions. 

Transplantation of foetal neuronal tissue 

Parkinson’s Disease
Idiopathic PD is the second most common

neurodegenerative disorder and affects more than
1% of all individuals over the age of fifty years
[12]. In Switzerland, about 10 000 to 12 000 per-
sons suffer from this disease. As the incidence of
PD rises with age, it is expected that this number
will increase significantly because of the aging

character of our society [13]. Clinical symptoms
are resting tremor, bradykinesia, rigidity and pos-
tural imbalance [14, 15]. PD is characterised by a
predominant and progressive loss of dopaminer-
gic neurons in the substantia nigra pars compacta
in the upper brain stem, which leads to a profound
loss of dopaminergic input into the striatum. It
has been shown that complex I activity is defective
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in multiple tissues from PD patients [16], and that
there is a maternal association in the hereditary
form of PD [17], suggesting a mitochondrial basis
for this disease.

Due to the fact that PD represents a rather
selective degenerative process of mainly
dopaminergic neurons of the nigrostriatal path-
way, this pathology has been considered as partic-
ularly suitable for the application of cell replace-
ment therapies (fig. 1). Extensive in vivo studies
have shown that foetal ventral mesencephalic
(VM) allografts display long-term survival in the
host brain, making and receiving connections
from host neurons [18, 19] (fig. 2). The trans-
planted tissue releases dopamine in a regulated

fashion and reverses many of the behavioural
deficits seen in animal models of PD [20, 21].
Based on the experimental data, first clinical trials
with neuronal transplantation in patients were
started in the late 1980s. Foetal nigral tissue can
be transplanted safely into the caudate and puta-
men bilaterally in patients with PD and with little
post-operative complications [22, 23]. The func-
tion of the grafted cells can be assessed by fluo-
rodopa deoxyglucose positron emission tomogra-
phy (FDG-PET). Neuropathological evidence
has been provided that human foetal VM grafts
survived and reinnervated the host striatum of a
PD patient who had shown significant clinical im-
provement as well as enhanced fluorodopa uptake
on PET scans [23–26]. Long-term graft survival
was confirmed in two patients with persisting
high FDG uptake when investigated 6 and 12
years after surgery [27, 28]. Significant clinical
improvement associated with graft survival has
been reported by several groups, mainly charac-
terised by reduced rigidity and bradykinesia, with
the ability to completely withdraw L-DOPA
treatment after surgery in the most successful
cases.

Notably, less than 20% of the transplanted
dopaminergic cells survive the transplantation
procedure [24, 29]. Studies in rats indicate that
most of these cells die within one week posttrans-
plantation [30], predominantly by apoptosis [31].
Hence it has become evident from the clinical tri-
als performed so far that significant clinical im-
provement is only achieved after grafting of a suf-
ficient amount of VM tissue (cells from 3 to 4
human embryos per side) [32, 22] followed by
favourable integration of the grafted dopamin-
ergic neurons into the host brain. In addition, the
position of the graft has been shown to play a
major role in the pathogenesis of novel dyskinetic
behaviour after transplantation in PD rats, and
widespread grafting could be an option to over-
come this problem [33]. 

The recently reported double-blind studies
by Freed and coworkers and Olanow and col-
leagues both failed to meet their primary end
points [34, 35]. Moreover, several patients devel-
oped severe side effects including dystonia and
dyskinesias [34, 36,37]. This might have been due
to insufficient dopamine release by the trans-
plants [35, 38]. Both studies, however, included
subjects who had failed drug therapy and it has
been suggested that patient selection may explain
the negative results reported by Olanow and col-
leagues [39]. It is likely that better results can be
expected with improved transplant protocols [35,
40, 41]. The complexity of these problems should
not be underestimated and clinical applications
should be planned with great care [37, 42]. These
notions ask for improved understanding of the
transplantation approaches and require extended
experimental studies. Winkler and co-authors
concluded that with further improvement and re-
finement of the grafting procedure there is every
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Figure 1

Schematic drawing of transplantation of dopaminergic cells in a patient suffering 

from Parkinson’s disease (PD). In the healthy brain, dopaminergic input to the striatum

is provided by the nigrostriatal projection system (A). In PD, degeneration of the

dopaminergic neurons in the substantia nigra leads to dopamine depletion in the

striatum and thus dysfunction of the extrapyramidal system (B). After intrastriatal

transplantation of dopaminergic neuronal precursor cells, these differentiate into 

neurons, establish functional connections to the surrounding striatal cells and restore

the dopaminergic input to the striatum (C).
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Figure 2

Photomicrograph 

of rat embryonic

dopaminergic precur-

sor cells transplanted

in a rat model of

Parkinson’s disease

and immunohisto-

chemically stained

for tyrosine hydroxy-

lase (TH). TH-im-

munoreactive grafted

cells (arrows) survive

in the host brain and

extend TH-immunore-

active axons into the

denervated striatum

(asterisk). Scale bar:

200 mm.
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reason to believe that cell transplantation can be
developed into a safe and efficacious restorative
therapy for advanced not too seriously affected
PD patients [41].

Taken together, neural transplantation ther-
apy in PD using tissue from aborted foetuses is
likely to remain experimental due to questions re-
garding standardisation and purity of cell material
[37, 42]. Due to the above mentioned limitations,
transplantation of human foetal tissue has there-
fore been largely abandoned at present and the
basic research focuses on alternatives to human
foetal tissue as a graft source, eg, transplantation
of immortalised neuronal cell lines, embryonic
and neural stem cells, porcine tissue and geneti-
cally modified cells [43].

Huntington’s disease
HD is a chronic autosomal dominant inher-

ited neurodegenerative disorder with full pene-
trance by mid-adult life and clinically presents
with progressive choreoathetotic movements in
combination with severe cognitive and emotional
dysfunction [44, 45]. The symptoms typically ap-
pear between the age of 30 and 40 years and dete-
riorate over a 10–20 year period, finally leading to
death [46]. HD has an overall prevalence rate in
Europe of approximately 10 per 100 000 people
[47]. The main pathological finding is a selective
loss of the GABA-ergic medium sized spiny pro-
jection neurons in the striatum. The gene (IT15)
located on the short arm of chromosome 4 [48]
responsible for the expression of HD and its asso-
ciated protein, huntingtin [49], have been identi-
fied through genetic research. The gene has been
shown to contain a multiplication of CAG trinu-
cleotide repeats responsible for different grades of
severity in the course of the disorder, while the
function of huntingtin has still to be elucidated. A
defect in energy metabolism has been proposed as
one of the potential pathogenetic mechanisms
[50]. Nevertheless, a wide gap still remains be-
tween the knowledge about the neuronal sub-
strates of HD and the ability to prevent or allevi-
ate the progression of the disorder.

Transplantation of embryonic striatal precur-
sor cells has been shown to restore deficits in ex-
perimental animal models of HD [51–53]. Simi-
larly to the situation in PD, clinical trials for cell
replacement strategies in HD using human foetal
tissue as cell source revealed survival of grafts in
the host brain. Most of the trials on cell trans-
plantation in HD published so far were dealing
with feasibility and safety issues. On the basis of
theses results, one can assume that cell replace-
ment for HD using foetal tissue is safe for the pa-
tients [54, 55]. Particularly interesting is the fact
that in the study of Hauser et al. surviving graft
tissue did not contain mutant huntingtin, indicat-
ing that the transplanted tissue was not affected
by the pathology of the host brain [56, 57]. In a
recent study, Keene and co-workers reported on
long-term survival and neuronal differentiation of

transplanted foetal tissue, however, the host brain
was found to be poorly innervated. In line with
this observation, the clinical benefit was found to
be rather poor in transplanted patients [58]. Based
on the outcome of this study, it was highlighted
that it is mandatory to perform clinical trials in
HD with great care and by means of blinded,
well-designed and controlled studies [59]. Never-
theless, the outcome of the French HD trial
showed minor but significant clinical improve-
ment in some of the transplanted patients [60, 61].
A multi-centre trial was recently initiated to eval-
uate the best protocols for cell replacement in
HD in order to make this technique available for
a broader range of non-specialist centres and to
verify these initial promising results (for review
see: [62]). As stated for cell transplantation ap-
proaches in PD, foetal tissue will not provide a
sufficient and standardised cell source for grafting
a large number of HD patients. Importantly to
note, cell transplantation is considered at present
to be the only choice for restorative treatment of
HD patients, hence research in this area as well as
searching for alternative cell sources should be
pursued [62].

Xenotransplantation
Xenotransplantation means that tissue is

transplanted across the species barrier. Using or-
gans from other species has long been considered
for overcoming a shortage of human donor or-
gans, such as heart, kidney and liver [63]. 

As a non-endangered species, pigs are consid-
ered a suitable source of donor tissue allowing
sterile dissection of large quantities of pathogen-
free tissue of the optimal embryonic age. A rela-
tively large brain size combined with a protracted
gestational period may provide the basis for long-
distance axonal growth after grafting, facilitating
efficient innervation of the host striatum. To what
extent grafted dopaminergic neurons are affected
by the on-going disease is still not known, but
natural species differences, including genetic re-
sistance in response to the disease process, could
provide an important advantage promoting long-
term survival and function of grafted porcine
cells. 

The transplantation of embryonic porcine
xenografts has been established after extensive
studies in Sweden and in the USA, both in PD
and HD [64]. A clinical safety trial with porcine
tissue including 12 Parkinson patients has been
published [65, 66]. Moderate clinical improve-
ments in some of the patients were reported. In
the brain of a patient who died for unrelated
causes a very limited survival rate of the dopamin-
ergic neurons, not accompanied by major rejec-
tion processes, was observed [65]. This finding
may point to lack of trophic support of grafted tis-
sue after transplantations similar to the sugges-
tions made in respect to allografts. 

The risk of spread of infection across the
species barrier (xenozoonosis), particularly by
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porcine endogenous retroviruses (PERVs), re-
mains a major obstacle that hampers further clin-
ical studies. However, in several studies investi-
gating the possibility of cross-species infectivity,
including a retrospective analysis of 160 human
transplant recipients exposed to porcine tissue, no
evidence for such transmission has been found
[67, 68]. Cross-species rejection issues requiring
immunosuppression of the host constitute an-
other unsolved problem. The ability to geneti-
cally modify species such as the pig to express
human genes and silence those provoking im-
mune response has enabled interesting perspec-
tives for genetically engineered cells in this
 context. The production of a gal-a-1,3-gal-
transferase transgenic pig [69] represents a signif-
icant advance towards eliminating hyperacute and
acute vascular rejection.

Stem cells
Stem cells are undifferentiated cells without

mature, tissue-specific characteristics that in re-
sponse to proper stimuli are able to proliferate, to

reproduce themselves and to produce generations
of progenitor cells, which can differentiate into
one or more cell types. 

Several strategies are currently being investi-
gated aiming at transplanting cells derived from a
variety of different stem cells, including embry-
onic stem (ES) cells, neural stem cells, bone
 marrow or mesenchymal stem cells as well as um-
bilical cord blood stem cells (fig. 3).

Human ES are derived from preimplantation
embryos generated for in vitro fertilisation.
Within a few days after fertilisation, they can be
removed from the inner cell mass of the blasto-
cyst, dissociated and propagated in specialised cell
culture media, where they can proliferate indefi-
nitely [70]. Differentiation of these cells can be
induced by changing culture conditions and expo-
sure to specific growth factors. Due to their
pluripotency, ES cells can potentially become any
cell in the body, which offers a huge potential for
cell replacement therapies [71].

Neural stem cells are found in already devel-
oped tissues of the foetus or the newborn, juvenile
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Figure 3

Diagram illustrating

the potential for dif-

ferentiation of stem

cells. Embryonic

stem cells can differ-

entiate into almost all

cells of our body.

With ongoing matu-

ration, their ability to

differentiate into dif-

ferent types of cells

becomes more and

more restricted. The

differentiation capa-

bility of neural stem

cells is restricted to

the neuronal and

glial lineage. Bone

marrow stem cells

have the capability 

to transdifferentiate

into neural stem cells

(dashed arrow). Stem

cells can proliferate

indefinitely (self-

renewal; circular 

arrows).

Figure 4

Photomicrographs of rat embryonic subventricular zone stem cells cultured as neurospheres (A). Differentiation of the

 cultured cells (Hoechst staining, blue) towards the neuronal phenotype is demonstrated by microtubule associated protein 2

immunostaining (green) and neurite outgrowth (B). Further differentiation towards specific neuronal subpopulations, eg,

dopaminergic cells, is demonstrated using immunohistochemistry for the catecholaminergic marker tyrosine hydroxylase (C).

Scale bar: 200 mm (A), 50 mm (B/C).
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and adult organism. They represent a source of
immature cells with the potential to renew them-
selves (immortality), and give rise to cells re-
stricted to the neuronal and glial lineage. These
cells are found in specific brain regions such as
the subventricular zone (SVZ), hippocampus, cor-
tex and spinal cord [72–74], in the developing and
in the adult brain [75–77]. Isolated neuronal stem
cells are able to proliferate in response to differ-
ent growth factors, such as basic fibroblast growth
factor (bFGF) or epidermal growth factor (EGF),
and to differentiate towards specific neuronal and
glial phenotypes when culture conditions are al-
tered [78] (fig. 4). Hence drugs that influence the
differentiation of stem cells and neuronal precur-
sors into a specific neurochemical phenotype
therefore hold a potential for improving cell re-
placement techniques [79]. These cells further-
more have the ability to migrate and form func-
tional synapses with the surrounding neurons. In
both HD and PD, transplantation of stem cell and
progenitors have been reported to resulted in im-
provement of these disease states in animal mod-
els [42, 79, 80, 81]. Recent studies have suggested
that bone marrow stem cells transplanted into
mice are able to migrate into specific regions of
the brain, including the olfactory bulb, cortex,
hippocampus and cerebellum, and differentiate
into cells that appear to be neurons [82, 83]. The
studies suggest that bone marrow may be an easily
available source of neural cells with potential for
treating neurological disorders. Another study
was able to show development of neuronal phe-
notypes after intravenous administration of previ-
ously harvested umbilical cord blood cells [84].
First experimental studies using umbilical cord
stem cells have reported promising results after
ischaemic insults [85], traumatic brain injury [86],
amyotrophic lateral sclerosis [87] and intracere-
bral haemorrhage [88]. Both the usage of autolo-
gous bone marrow and umbilical cord blood stem
cells offer the advantage of tolerance by the host
immune system. Moreover, they can be adminis-

tered by injection into a peripheral blood vessel,
therefore not requiring brain surgery. 

In each of these paradigms, the main problem
to be solved is the missing knowledge how trans-
planted cells differentiate. This includes the risk
of uncontrolled growth and tumour formation in
the host brain. In addition, the usage of ES cells
has raised severe ethical concerns, particularly in
the USA, which may hamper basic research and
clinical application in the future [89]. In addition,
many cell lines have recently been reported to be
contaminated by murine pathogens [90]. Human
stem cells cultured in the presence of animal cells
or sera have also been shown to incorporate for-
eign sugars into their surface proteins, which may
provoke immune response [91]. According to
these findings, most stem cell lines have to be re-
established using environments free of animal
cells and sera in respect to enable a safe applica-
tion in humans.

Neuronal cell lines
Immortalised neuronal precursor cell lines

kept in culture might offer an additional, theoret-
ically unlimited source of specific cells of the neu-
ronal or glial lineage for transplantation [92]. As
an example, the clonal cell line RN33b was gener-
ated from embryonic rat raphe nucleus and trans-
duced with the temperature sensitive mutant of
the Simian Virus 40 (SV40) large T-antigen [93].
The transplanted cells can be detected by re-
porter genes for beta-galactosidase (beta-Gal) and
green fluorescent protein (GFP). Several studies
have shown that transplanted RN33b cells are
able to survive in the brain and spinal cord, differ-
entiate into specific neuronal phenotypes in a re-
gion-specific fashion [94, 95], and establish elec-
trophysiologically active axonal projections [96]
(for review see: [80]). Notably, transplantation of
cells derived from cell lines contains the same ob-
stacles as transplantation of non-transformed
neural stem cells. 
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Neural transplantation for other neurodegenerative diseases 

Amyotrophic lateral sclerosis 
ALS is a rare neurodegenerative disorder char-

acterised by the loss of the large cholinergic motor
neurons in the spinal cord and degeneration of the
neurons in the motor cortex, resulting in progres-
sive paralysis and ultimately death. The underlying
pathological process remains enigmatic, however,
mutations in the superoxid dismutase 1 gene
(SOD1) have been identified, resulting in protein
misfolding and toxicity on the vulnerable cholin -
ergic cells [97]. So far, no effective treatment options
are available for patients suffering from this disease.

Basic research has proven that transplanted hu-
man ES cells can be differentiated into cholinergic

motor neurons [98]. They survive in a rodent model
of ALS and show functional benefits [99]. However,
it has been argued that these effects are related on
the differentiation of stem cells into glial cells pro-
ducing trophic support for dying motor neurons
rather than by direct motor neuron replacement
[100]. Preliminary stem cell transplantations in pa-
tients using autologous blood- and bone marrow-
derived cells have shown the absence of major side
effects, but no or only slight clinical efficacy [101,
102]. It has to be concluded that the biological is-
sues have to be clarified before further applications
on patients should be performed.
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Alzheimer’s disease
Alzheimer´s disease (AD) is the most com-

mon neurodegenerative disorder. About 5% of
the population over 65 is suffering from the dis-
ease. As the overall life expectancy is prolonged
with the advancement in medical science, the in-
cidence of AD related to aging has dramatically
risen [103]. The underlying pathological mecha-
nisms are not yet understood, although aging and
genetic predisposition have been identified as
major risk factors. AD starts in the mesiotemporal
region which in the course of the disease shows
strong alterations [104, 105]. AD also severely af-
fects neurons in the frontal and parietal associa-
tion neocortex, leading to progressive dementia.
The pathological hallmarks of AD are extracellu-
lar plaques and intracellular tangles constituted of
amyloid 
, a peptide derived from amyloid pre-
cursor protein (APP). It is not clear, however,
whether these pathological accumulations are the
markers or the causes of AD. 

Notably, Hock and co-workers reported that
immunisation of patients with aggregated amy-
loid b-42 resulting in the production of antibod-
ies against amyloid b slowed cognitive decline in
AD [106]. The outcome of a large randomised,
placebo-controlled, double-blind trial, however,
did not reveal the anticipated results and was
 interrupted following reports of meningo -
encephalitis [107]. Nevertheless, there is proof of
concept of this therapy for AD [108,109]. In line
with this statement, a monoclonal antibody
 (Bapineuzumab) designed to reduce the amount
of amyloid b in the brain co-developed by the
companies Elan and Wyeth is currently in phase
II clinical trial and foreseen charging towards
phase III trial in 2008.

Importantly, many different neurotransmitter
systems, in particular the cholinergic, noradrener-
gic and serotonergic system, are involved in the
degeneration processes in AD [110]. Current
drug therapies, usually based on cholinesterase in-
hibitors, only relieve some of the associated
symptoms of the disease, if at all [111]. Due to the
extensive degeneration of multiple neuronal phe-
notypes in widespread brain areas, establishing a
cell replacement strategy in AD is considered one
of the most demanding challenges in restorative
neuroscience. So far, experimental studies using
embryonic cholinergic transplants in animals suf-
fering cholinergic depletion in different brain re-
gions such as hippocampus, septal area, basal
forebrain and neocortex have shown functional
benefits [112, 113]. Due to the above-mentioned

problems and the nascent stage of basic research,
no clinical studies of cell replacement in AD pa-
tients have been carried out so far.

Demyelinating diseases
Multiple sclerosis (MS) is the most prominent

pathology in the group of demyelinating diseases,
with a prevalence of 110 cases per 100 000 inhab-
itants in Switzerland [114]. Nowadays, potent im-
munosuppressive and immunomodulating treat-
ment regimens are available and allow the pre-
vention of severe irreversible neurological deficits
in most cases. However, there are still patients
with MS resistant to conventional therapy, result-
ing in disabling neurological sequelae. In order to
offer these patients strategies for myelin repair,
numerous attempts to develop cell-based thera-
pies have been made during the past decade. In
MS, the disease process is primarily directed
against oligodendrocytes and/or myelin, with
neuronal structures such as axons relatively
spared until late disease [115]. Therefore, repara-
tive therapy has primarily to be focused on restor-
ing the oligodendrocytes supplying the axons
with myelin, without the need to re-establish a
disrupted neuronal circuitry. Interestingly,
Schwann cells, which usually provide myelin and
glial support in the peripheral nerve, have shown
good results in myelin repair, both in the brain
[116] and particularly in the spinal cord [117].
Comparable effects have been found using olfac-
tory ensheathing cells (OECs) in spinal cord de-
myelination [118]. Finally, stem cells have been
shown to possess a considerable remyelinating
potential [119]. A recent study using transplanta-
tion of pluripotent ES cells in an antibody/com-
plement-induced demyelination model in the rat
spinal cord demonstrated survival of the cells, dif-
ferentiation both in oligodendrocytes and astro-
cytes and formation of new glial sheets [120].

So far, first clinical studies including implan-
tation of dissociated rat Schwann cells [121, 122],
transplantation of oligodendrocyte lineage pre-
cursor cells [123, 124], transplantation of oligo-
dendrocyte precursors derived from cell lines
[125, 126], and OECs [127] have been carried out
with limited success. Critical parameters that re-
quire further investigations include the develop-
mental stage of the oligodendrocyte precursors to
be transplanted, the insufficient survival of trans-
planted cells, particularly in the context of a sys-
temic immunoresponse against these cells and
significant differences between human and rodent
oligodendrocyte progenitor cells.
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Neural transplantation for specific neurological disorders

Ischaemic stroke
Cerebral ischaemic stroke is one of the lead-

ing cause of death and disability among the eld-

erly people worldwide and has an incidence of 
150 per 100’000 people per year [128]. Due to the
recent advances in the diagnosis, treatment and
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rehabilitation in stroke, the percentage of patients
suffering severe neurological deficits has con-
stantly dropped in the last decade, and the sever-
ity of the sequelae has been reduced. However,
there are still many patients suffering from irre-
versible brain parenchyma defects due to stroke,
with about 60% of them requiring care two weeks
after the insult [128]. Hence, stroke places a heavy
burden on national health care systems and de-
mands for the development of novel effective
treatment options. 

Importantly, multiple different neuronal phe-
notypes and glial cells in different brain areas, eg,
cortex, basal ganglia and thalamus, are affected in
cerebral stroke. Therefore this pathology poses
special conditions that impact the potential suc-
cess of cell replacement therapies. Because the
disease affects both gray and white matter, imma-
ture cells that have the potential to differentiate
into appropriate neuronal and glial phenotypes
are considered as best suitable for transplantation.
So far, restorative strategies have focused on the
striatum, due to clear anatomical definition, good
stereotactical accessibility and less degree of
white matter involvement than in cortical stroke,
therefore allowing a less complex approach [129].
First clinical trials of neural transplantation in
stroke have been launched in the late 1990s. One
study investigated the transplantation of cells
from the immortalised cell line NT2, which is de-
rived from a human testicular germ cell tumour
[130]. In preclinical studies, grafted NT2 cells,
which terminally differentiate into mature neu-
ronal phenotypes after intracerebral transplanta-
tion [131], showed significant improvements in
behavioural tests after focal cerebral ischaemia
[132]. A first clinical study to investigate the safety
of transplantation of NT2 cells after basal ganglia
infarction was started in 12 patients [133]. Up to
date, no adverse effects of the procedure have
been reported.  Subsequently, a randomised trial
with observer-blinded neurological evaluation
was started in 14 patients with substantial motor
deficits after basal ganglia infarction. Again, no
adverse effects of the transplantation were pres-
ent. However, patients with NT2 grafts showed
only a trend towards a better functional outcome
[134]. Another group investigated xenotransplan-
tation of porcine foetal striatal precursor cells
 derived from the lateral ganglionic eminence,
which previously have been reported to improve
deficits in animal models of HD [64]. After focal
ischaemia, intrastriatal transplantation of these
cells leads to graft survival and differentiation of
transplanted cells into glia and neurons with a
striatal phenotype. There was evidence for synap-
togenesis both with the host brain and within the
graft. Four weeks after transplantation, animals
showed significant behavioural improvements as
compared with controls. However, no effects
were found at later time points [67]. In a first clin-
ical trial transplanting foetal porcine tissue, it was
reported that two out of the five treated patients

showed functional improvement after four years
of clinical follow-up [135].

Basic and clinical research in neuronal trans-
plantation for stroke is still in an early stage. Par-
ticularly, using cell replacement approaches for
stroke, it remains unclear if the transplanted neu-
rons themselves promote functional recovery or if
the transplants modulate the response of the
brain to ischaemic neurogenesis, synaptogenesis,
angiogenesis and inflammation. Actually, there
are a number of new preclinical studies of neu-
ronal transplantation in stroke carried out (for re-
view see: [136]). At present, transplantation of
bone marrow stromal cells, which can be transdif-
ferentiated to neuronal progenitors by exposure
to specific growth factors, human umbilical blood
cord stem cells, human adipose stromal cells and
human neural stem cells have been investigated
with varying success [137]. Interestingly, recent
studies have demonstrated that intravenous infu-
sions of umbilical cord blood can ameliorate neu-
rological deficits associated with ischaemic brain
injury in rodents, but it again remains unclear
whether growth factors secreted from these cells
are responsible for the induced regeneration
processes rather than integration of the trans-
planted cells in the brain [138]. It can be assumed
that inducing de novo neurogenesis may provide a
more effective therapeutic strategy to promote
recovery from stroke rather than transplanting
exogenous cells [138].

Intracerebral haemorrhage
Spontaneous intracerebral haemorrhage

(ICH) represents at least 10% of strokes in the
Western population [139] and constitutes one of
the most devastating forms of cerebrovascular
disease. No direct treatment of the brain damage
caused by ICH is currently available. Like in 
ischaemic stroke, progress in experimental neuro-
biology gives hope that new brain repair strate-
gies using stem cell transplantation could be also
advantageously employed against this disease
state. So far, only two preclinical studies of neu-
ronal tissue grafting in ICH have been reported.
One study did not report any functional improve-
ment after transplantation of foetal brain tissue
[140]. Another report showed integration of
 intravenously administrated human neuronal
stem cells in the damaged brain and functional
 recovery in rats undergoing ICH [141]. Intense
research efforts are currently being undertaken to
establish a more reproducible animal model of
ICH and to improve neuronal transplantation in
this context [142, 143].

Trauma to the brain and spinal cord
Traumatic injury to the brain and spinal cord

usually results in irreversible neurological deficits
that can only partially be compensated by activa-
tion of other neural networks, which functionally
replace the damaged neurons. During the last two
decades, advances in both basic and clinical re-
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search have markedly improved our understand-
ing of the cellular and molecular mechanisms in
brain and spinal cord trauma [144–146]. In addi-
tion, sophisticated cerebral and spinal lesion
models have been developed that allow the study
of traumatic events and adequate treatment
strategies in vivo [147]. 

In this context, it is important to note that
neutralising the inhibitory effects of NOGO-A,
which is a potent inhibitor of neurite outgrowth
in the adult CNS, resulted in enhanced fibre
growth and functional recovery in rodent and pri-
mate models of spinal cord injury [148]. The first
clinical trial assessing the therapeutic potential of
antibodies to NOGO-A is currently in progress
[149].

Neural transplantation has turned out to be
an important therapeutic option at least in exper-
imental studies [145, 150, 151]. Various cell types
have been investigated because of their consider-
able potential for promoting axonal regeneration.
Schwann cells and OECs are glial elements that
have both the capacity to stimulate fibre out-
growth as well as to remyelinate the tissue. Stud-
ies have shown a potential benefit of the trans-
plantation of Schwann cells [152] and OECs [153]
in models of complete and incomplete transection
as well as contusion of the spinal cord. While
there are no published studies of Schwann cells
transplantation in humans so far, first clinical tri-
als have shown that transplantation of autologous
OECs is feasible, however there were no signifi-
cant effects on neurological outcome [154]. Bone
marrow stromal cells, which show stem cell-like
attributes and pluripotency [155] and can both

differentiate in neurons and glia [82, 83], have
been found to promote functional recovery in
spinal cord injury models. In addition, first studies
have proven that human stem cells can differenti-
ate into neurons and glia and promote locomotor
recovery in spinal cord-injured mice [156].

Epilepsy
Medically intractable epilepsy, which means

that the seizures are resistant to treatment with a
combination of different anticonvulsive drugs, is
usually treated surgically with ablative procedures
to remove epileptogenic foci, eg, by performing
selective amygdala-hippocampectomy or tem-
poromesial lobectomy [157]. The precise under-
lying pathology of idiopathic epileptic seizures re-
mains enigmatic in most cases, however, a imbal-
ance between inhibitory and excitatory neuro-
transmitters in favour of the latter is usually con-
sidered to be present [158]. Cell-based therapies,
such as the transplantation of inhibitory neurons
like GABA-ergic cells, might therefore be useful
for correcting the imbalance and thus preventing
or alleviating seizures without the need for irre-
versible ablative surgery. First preclinical trials
with transplantation of genetically engineered,
GABA-releasing precursors [159] or human neu-
ral stem cells [160] in rats suffering from seizures
have shown to decrease neuronal excitability and
to raise the seizure threshold. With the advance of
research, transplantation of inhibitory neurons
therefore might become a novel, less aggressive
treatment option for patients suffering from in-
tractable epileptic seizures.
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Strategies to improve cell replacement approaches

Neurotrophic Factors
Nerve growth factors or neurotrophic factors

are proteins produced by glial cells and neurons
during the development of the CNS that play im-
portant roles in controlling and coordinating neu-
ronal growth, survival and differentiation. Many
of them have been identified promoting survival
and/or differentiation of specific neuronal sub-
populations in vitro and in vivo (table 1). Among
the most effective are the neurotrophin family
members nerve growth factor (NGF), brain-de-
rived neurotrophic factor (BDNF), neurotrophin-
4/5 (NT-4/5) and the glial cell line-derived neu-
rotrophic factor (GDNF) family ligands (GFLs)
[161, 162]. The GFLs belong to a distant branch
of the transforming growth factor-b superfamily
[163, 164], which comprises GDNF [165], neur-
turin (NTN) [166], Persephin (PSP) [167] and
artemin (ARTN) [168] and have been described as
being potent survival factors for midbrain
dopamine neurons, motoneurons, noradrenergic
neurons, and sympathetic, parasympathetic and

sensory neurons [164, 169–173]. Neuroprotective
effects of GDNF have been reported in experi-
mental models of PD [174]. In addition, GDNF
has been found to induce the expression of the
dopaminergic marker tyrosine hydroxylase (TH)
in late developmental stages of cultured neural
progenitor cells and may therefore provide a ro-
bust tool to interfere with final cell fate specifica-
tion of neural precursor cells [175]. A very recent
study by Lindholm and co-workers described a
novel neurotrophic factor for dopamine neurons:
conserved dopamine neurotrophic factor
(CDNF), which was at least as efficient as GDNF
in their experimental settings, suggesting that
CDNF might be beneficial for the treatment of
PD [176]. 

Preliminary clinical trials with neurotrophic
factors have been carried out in PD, HD, ALS and
AD (table 2). Notably, the first attempts to apply
factors failed to demonstrate any significant clini-
cal benefits, despite positive preclinical data [177].
It is assumed that this was due primarily because
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of the poor blood-brain barrier permeability of
these proteins [178]. Recent developments of new
delivery methods, eg, adeno-associated virus
(AAV) mediated transfer [179], have revived the
interest in these potential nervous system protein
therapeutics [177]. A first small open-label clinical

trial provided evidence that direct infusion of
GDNF into the putamen of PD patients resulted
in improvement of motor scores [180]. The bene-
fits of intracerebral delivery of GDNF, however,
could not be substantiated in a recent double-
blinded placebo-controlled study. Moreover,
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Growth factor References

Artemin (ARTN) Baloh et al., 1998 [168]

Bone morphogenetic protein (BMP) family Chen et al., 2004 [215]
Harvey et al., 2005 [216]

Brain-derived neurotrophic factor (BDNF) Barde et al., 1987 [217]
Leibrock et al., 1989 [218]

Ciliary neurotrophic factor (CNTF) Lin et al., 1989 [219]
Stockli et al., 1989 [220]

Conserved dopamine neurotrophic factor (CDNF) Lindholm et al., 2007 [176]

Epidermal growth factor (EGF) Morrison et al., 1988 [221]

Fibroblast growth factors (FGFs) Gospodarowicz et al., 1986 [222]
Grothe and Timmer, 2007 [223]

Glial cell line-derived neurotrophic factor (GDNF) Lin et al., 1993 [164]
Beck et al., 1995 [169]

Insulin-like growth factors (IGF), insulin Aizenman et al., 1986 [224]
Baskin et al., 1987 [225]

Interleukins (IL) Spranger et al., 1990 [226]
Kamegai et al., 1990 [227]
Hama et al., 1990 [228]

Nerve growth factor (NGF) Whittemore and Seiger, 1987 [229]
Thoenen et al., 1987 [230]
Hefti, 1986 [231]

Neurturin (NTN) Widenfalk et al., 1997 [232]
Horger et al., 1998 [233]
Akerud et al., 1999 [234]

Neurotrophin-3 (NT-3) Hohn et al., 1990 [235]
Maisonpierre et al., 1990 [236]
Rosenthal et al., 1990 [237]

Neurotrophin-4/5 (NT-4/5) Hynes et al., 1994 [238]
Widmer and Hefti, 1994 [239]

Persephin (PSP) Milbrandt et al., 1998 [167]
Zihlmann et al., 2005 [240]

Transforming growth factor a (TGF-a) Derynck, 1988 [241]
Code et al., 1987 [242]

Transforming growth factor b (TGF-b) Ren and Flanders, 1996 [243]

* This table lists only a selection of growth factors and correspondingly only a selection of references.

Table 1

Growth factors 

with neurotrophic 

activity*.

Neurotrophic factor Disease References

BDNF ALS Bensimon et al., 1999 [244]

Kalra et al., 2003 [245]

CNTF ALS / HD Bloch et al., 2004 [186]

IGF-1 ALS Borasio et al., 1998 [246]

Lai et al., 1997 [247]

GDNF PD Nutt et al., 2003  [248]

Lang et al., 2006 [249]

NGF AD Tuszynski et al., 2005 [187] 
CERE-110: Adeno-associated virus (AAV)-based delivery 
of b-NGF in subjects with mild to moderate Alzheimer’s
disease. Available at http://clinicaltrials.gov/ct/show/NCT
00087789?order=1.

NTN PD Safety of CERE-120 (AAV2-NTN) in subjects with 
idiopathic Parkinson’s disease. Available at http://
clinicaltrials.gov/ct/show/NCT00252850?order=1. 

Table 2

Neurotrophic factors

in clinical trials.
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safety concerns emerged [181]. One elegant
method for delivering neurotrophic factors to the
brain is the use of encapsulated cell lines engi-
neered to produce neurotrophic factors [182–
184]. Its major advantage is a continuous, almost
unlimited supply of these molecules. Encapsula-
tion in a porous polymer membrane also provides
a high safety level in regard to tumour formation
while allowing exchange of metabolites. In addi-
tion, it separates the xenogenic cells from the host
immune system [182]. So we have previously
shown that implantation of encapsulated geneti-
cally engineered fibroblasts producing GDNF re-
sulted in better survival and host integration of
transplanted dopaminergic cells in the rat [185]. A
phase I study that evaluated intracerebral admin-
istration of CNTF in subjects with HD, using a
device formed by a semipermeable membrane en-
capsulating a cell line engineered to synthesise
CNTF, demonstrated the safety, feasibility, and
tolerability of this gene therapy approach [186].

A new promising window of neurotrophic
factor delivery to the brain has been opened by
the study of Tuszynski and colleagues [187]. In a
phase I human clinical trial, autologous geneti-
cally modified fibroblasts releasing NGF were
transplanted in eight patients with early stage AD.
The preliminary results indicate that ex vivo NGF
gene delivery is safe and seems to provide trophic
support to degenerating cholinergic neurons
[188]. Neurotrophic factor delivery to the brain
may also be achieved by means of transplanting
native or modified stem cells. So it has been de-
scribed that transplantation of mesenchymal stem
cells results in improved functional outcome in
animal models of neurological disorders. These
cells have, however, generally only a limited abil-
ity to differentiate into neurons. A recent study
now showed that transplanted human adult mes-
enchymal stem cells released neurotrophins,
which offers the possibility that co-transplanta-
tion of such cells with tissue grafts results in im-
proved functional outcome [189].

Neuroprotective drugs
Survival of neuronal cells exposed to oxidative

and metabolic stress can be improved by antioxi-
dants, which act as free radical scavengers. One of
these substances is the lazaroid tirilazad mesylate,
which inhibits lipid peroxidation and can be used
for pretreatment of grafts and/or can be postoper-
atively administrated to the transplanted patients.
So Brundin and colleagues were able to show im-
proved survival of rat and human dopaminergic
cells in vitro and in vivo [190], however, only dis-
crete effects could be demonstrated in patients
[191].

Compounds that inhibit neuronal apoptosis
[192] have been thoroughly investigated as poten-
tial drugs for improving neuronal cell survival.
Such different substances as minocycline, a tetra-
cyclin antibiotic [193], cytokines like erythropoi-
etin [194] and granulocyte-colony stimulating

factor [195], specific inhibitors of enzymes in-
volved in apoptosis like the caspase inhibitor
zVAD [196] and many others have been identified
to possess anti-apoptotic properties on neuronal
cells. However, caution must be exercised in view
of possible side effects to successfully transfer
therapeutic compounds to the clinic. Due to their
long-established safety, minocycline and erythro-
poietin are the most appealing candidates for clin-
ical trials in patients.

Creatine
The specific functional properties of neuronal

tissue make high demands on cellular energy re-
sources. Rapid changes in ATP demands are oc-
curring during physiological function of neurons,
while cellular energy reserves are very small [197].
Widely distributed cellular processes and sites of
very high energy consumption localised at remote
locations from the cell body, such as synapses, re-
quire mechanisms to facilitate energy transfer
within the cell. The phosphocreatine/creatine ki-
nase (PCr/CK) system has been described as play-
ing a key role for maintaining the cellular energy
homeostasis in neurons [198, 199]. Due to its
function as a temporal ATP buffer and a carrier
for high energy phosphates from sites of ATP
production to sites of ATP consumption, it pre-
vents marked changes in the concentrations of
ADP and ATP, which has been postulated to be
crucial in neuronal cells [200]. 

Despite intense research activities, the aetiol-
ogy of neuronal death in neurodegenerative dis-
eases still remains widely unclear. However, there
are a number of similarities in the fundamental
biochemical processes involved in the pathogene-
sis and progression of these otherwise different
pathological states. The concepts of energy deple-
tion, oxidative stress, excitotoxicity, and mito-
chondrial dysfunction have been implicated in
HD, PD, ALS, and several hereditary mitochon-
drial neuromuscular disorders [201, 202, 203]. Al-
though these processes may be directly or indi-
rectly involved in the pathogenesis of a given dis-
ease, they converge in final common pathways of
either necrosis or apoptosis. Substantial evidence
indicates that energy dysfunction plays either a
primary or secondary role in cell death in neu-
rodegenerative and neuromuscular disorders, and
even in normal aging. Agents that counteract
these defects may therefore be useful as novel
therapeutic strategies. Therapeutic supplementa-
tion of creatine has been reported to improve cel-
lular ATP resources, inhibit apoptosis and there-
fore exert neuroprotective properties [204, 205].
In respect to neurorestorative paradigms, we have
shown that creatine exposure protected dopamin-
ergic (Fig. 5) and GABA-ergic neurons in experi-
mental in vitro models of PD [206] and HD and
induced differentiation of neuronal precursors to-
wards the GABA-ergic phenotype [207]. Further-
more, creatine provided neuroprotection on
dopaminergic cells during storage in an organ-
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otypic tissue culture system [208]. Creatine seems
therefore to be one of the most promising neuro-
protective substances. In line with this notion, a
number of clinical trials were launched or are
planned for PD, HD, and ALS.

Endogenous regeneration
The presence of endogenous stem cells and

persistent neuronal production in specific regions
of the adult human brain [209] suggests a previ-
ously unrecognised capacity for regeneration in
the CNS. In particular two brain regions, namely
the subgranular zone of the hippocampal dentate
gyrus, and the forebrain subventricular zones of

the lateral ventricles, have been identified as con-
taining stem cells giving rise to neurons and 
glia [210]. Using 5-bromo-2’-deoxyuridine 5’-
monophosphate labeling, it has been shown that
experimental stroke [211] and also intermittent
hypoxia [212] resulted in stimulation of neuroge-
nesis in the adult brain. It may be speculated that
activation or recruitment of these endogenous
stem cells, eg, by administration of appropriate
drugs and growth factors, might offer fascinating
new treatment options for various neurological
disease states and also means to prevent brain at-
rophy during normal aging [213, 214].
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Figure 5
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Future directions

The findings reported from preclinical and
clinical studies demonstrate that cell replacement
strategies have the potential to become novel and
effective therapeutic approaches for repair of the
brain and spinal cord after a variety of degenera-
tive, vascular and traumatic lesions. However, due
to the limitations described above, these tech-
niques still remain experimental and can only be
applied to small groups of patients in the context
of clinical studies, if at all. There are mainly three
limitations that have to be overcome in the next
years if these strategies should achieve clinical sig-
nificance. First, a better understanding of the
treated disorders is required to further develop
and improve regenerative strategies and to
achieve a better survival and functional integra-
tion of the grafted cells under pathological condi-
tions. Second, the shortage of donor tissue and
ethical issues demand an improvement in trans-
plantation efficacy and forced research for alter-
native tissue sources, like autologous stem cells
and neuronal cell lines. Third, possible side ef-
fects, eg, dyskinesias after cell transplantation in
PD, have to be elucidated and prevented by ade-
quate means.

In our opinion, given the complexity of the
field, only a multimodal approach that includes
the development of reliable tissue sources, ad-

vanced techniques for tissue storage and neural
transplantation, effective drugs such as growth
factors to induce differentiation towards the re-
quired specific neuronal phenotype, and neuro-
protective agents to improve sustained graft sur-
vival will ensure a successful clinical application of
cell replacement strategies. Another potential goal
of restorative neuroscience might consist of har-
vesting a patient’s own neural stem cells, in vitro
expansion and induction of differentiation to the
required neuronal phenotypes and reimplantation
into the damaged structures of the CNS. If we
manage to gain further knowledge how stem cells
are activated, differentiate, migrate and establish
structural and function interaction with the sur-
rounding cells of the host brain and the extracel-
lular matrix, it may be possible to achieve neu-
ronal repair by activating the endogenous stem
cells without the need for any transplantation
[138]. This could be accomplished by application
of appropriate growth factors and other molecules
that interfere with neuronal proliferation and dif-
ferentiation, for example. Furthermore it may be
speculated that activation of endogenous stem
cells might prevent atrophy and functional loss in
the aging brain, an issue that will become more
and more important in the context of our increas-
ing life expectancy.
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The field of restorative neuroscience and re-
generation in the CNS represents a research area
where increasing efforts hope to provide thera-
peutic options for pathologies for which currently
no effective treatment strategies are available.
However, much more research is needed to char-
acterise and understand the biology of different
types of cells intended for cell replacement thera-
pies both in vitro and in vivo. Existing clinical data
suggest that transplantation is technically feasible
and can be carried out safely, but the data on func-
tional outcome and long-term efficiency is still
rather preliminary. Taken together, we propose
that cell replacement strategies in combination

with appropriate growth factors and / or neuro-
protective drugs hold the potential to be effective
treatment options for a variety of neuropatholog-
ical conditions. 
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