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Early prenatal diagnosis and in utero therapy
of certain fetal diseases have the potential to reduce
fetal morbidity and mortality. The intrauterine
transplantation of stem cells provides in some 
instances a therapeutic option before definitive
organ failure occurs. Clinical experiences show
that certain diseases, such as immune deficiencies
or inborn errors of metabolism, can be successfully
treated using stem cells derived from bone mar-
row. However, a remaining problem is the low
level of engraftment that can be achieved. 

Efforts are made in animal models to optimise
the graft and study the recipient’s microenviron-
ment to increase long-term engraftment levels.
Our experiments in mice show similar early hom-
ing of allogeneic and xenogeneic stem cells and
reasonable early engraftment of allogeneic murine
fetal liver cells (17.1% donor cells in peripheral
blood 4 weeks after transplantation), whereas
xenogeneic HSC are rapidly diminished due to
missing self-renewal and low differentiation ca-
pacities in the host’s microenvironment. Allo-

geneic murine fetal liver cells have very good long-
term engraftment (49.9% donor cells in peripheral
blood 16 weeks after transplantation). Compared
to the rodents, the sheep model has the advantage
of body size and gestation comparable to the
human fetus. Here, ultrasound-guided injection
techniques significantly decreased fetal loss rates.
In contrast to the murine in utero model, the re-
population capacities of allogeneic ovine fetal liver
cells are lower (0.112% donor cells in peripheral
blood 3 weeks after transplantation). The effect of
MHC on engraftment levels seems to be marginal,
since no differences could be observed between au-
tologous and allogeneic transplantation (0.117%
donor cells vs 0.112% donor cells in peripheral
blood 1 to 2 weeks after transplantation).

Further research is needed to study optimal
timing and graft composition as well as immuno-
logical aspects of in utero transplantation.
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Over the last two decades extensive efforts
have been made to develop techniques for early
prenatal diagnosis of certain genetic diseases.
Today fetal material can be obtained for genetic
analysis as early as in the first trimester by chori-
onic villous sampling (CVS) [1]. Prenatal diagno-
sis for chromosomal defects or single gene disor-
ders is based on new molecular biology techniques
such as PCR using either fetal material from an in-
vasive test, such as CVS, or using fetal cells or fetal
cell-free DNA from maternal blood [2, 3]. How-
ever, the early diagnosis should also allow early
treatment, because some diseases would lead to
manifest organ damage already during gestation.
Though several prenatal treatment options are
available for some diseases, such as intrauterine

blood transfusion in cases of severe fetal anaemia,
others are still experimental and prone to a high
fetal loss rate [4]. 

It is known that some diseases, such as haemo-
globinopathies (eg Fanconi’s anaemia, thalas-
saemia), immunological defects (eg SCID) or cer-
tain inborn errors of metabolism (M. Hurler, 
M. Krabbe) can be treated by transplantation of
stem cells [5]. If the stem cell transplantation is
performed before symptoms of the disease occur,
organ function can be preserved [6]. However, if
transplantation is performed after delivery of the
baby, intensive immunosuppression and myoabla-
tion have to be used to minimise the risk of Graft-
versus-host disease and to empty the bone marrow.
A suitable stem cell donor is not always available.

Summary

This work was
supported by the
Swiss National
Science Founda-
tion NFP46 grant
no. 4046-058662/1.

Introduction

498Minireview S W I S S  M E D  W K LY 2 0 0 6 ; 1 3 6 : 4 9 8 – 5 0 3 ·  w w w. s m w. c h

Peer reviewed article



S W I S S  M E D  W K LY 2 0 0 6 ; 1 3 6 : 4 9 8 – 5 0 3  ·  w w w. s m w. c h 499

Despite the established worldwide stem cell reg-
istries, approximately 40% of patients fail to find
an HLA-matched stem cell donor [7].

Thus, in utero stem cell transplantation would
be an alternative to the common postnatal trans-
plantation. Its advantages are based on the unique
opportunity provided by the normal haematolog-
ical ontogeny. The early fetus is immunological
immature and thus would theoretically accept for-
eign antigens [8]. The conditioning therapy prior
to transplantation could be omitted. Using the ad-
vantages of early prenatal diagnosis in the first
trimester, stem cells have to be transplanted before
maturation of the fetal thymus and the accumula-
tion of fetal T cells in early second trimester [9].
Naturally occurring intrauterine transplantation
and following persistent microchimerism have 
already been described for dizygotic twins, which

allows specific transplantation tolerance [10, 11].
During gestation, the developing fetal haemato-
poietic system undergoes rapid changes and ex-
pansion. Since the fetal bone marrow is becoming
a niche in the beginning second trimester, it would
then probably provide equal chances of homing for
the circulating stem cells, either own or trans-
planted [12]. The small size of the fetus would 
obviate the transplantation of large cell numbers.
All these factors would lead to an easier donor se-
lection with less strict HLA-match and graft size.
Additionally, once successfully transplanted, the
intrauterine environment would protect the fetus
during ongoing gestation from surrounding viral
and bacterial infections. The major advantage
would result from the early transplantation before
definitive organ damage has occurred. 

Clinical experiences

The first in utero transplantation of haemato-
poietic stem cells was performed in a 17-week old
fetus with rhesus-isoimmunisation. Using mater-

nal T-cell depleted bone marrow injected into 
the umbilical vein did however not result in post-
natal engraftment [13]. Since then intrauterine

Immunodeficiency disorders Bare lymphocyte syndrome

Cartilage-hair hypoplasia

Chediak-Higashi syndrome

Chronic granulomatous disease

Kostman’s syndrome

Leukocyte adhesion defiency

Omenn syndrome

Severe combined immunodeficiency syndrome 

Wiskott-Aldrich syndrome

X-linked immunodeficiency with hyperimmunoglobin M

X-linked Bruton agammaglobulinaemia

Haemoglobinopathies and Rh disease Congenital erythropoietic porphyria 

aa-Thalassaemia

bb-Thalassaemia

Sickle cell disease

Rhesus isoimmunisation  

Enzyme storage diseases a-Mannosidosis

Adrenoleukodystrophy

Gaucher disease

Globoid cell leukodystrophy

Metachromatic leukodystrophy

Mucopolysaccharidoses

Niemann-Pick disease

Wolmans disease

Others Dyskeratosis congenital

Familial haemaphagocytic lymphohistiocytosis

Haemophilia A

Infantile osteopetrosis

Osteogenesis imperfecta

Shwachman-Diamond syndrome

Table 1

Inherited disorders
that might benefit
from in utero stem
cell transplantation
(attempted in utero
transplantation is in-
dicated by bold font)
[adapted from refer-
ence 44].
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stem cell transplantation has been attempted in
cases of haematopoietic and non-haematopoietic
diseases (table 1). It has been most successful 
in cases with immunodeficiencies. Touraine and
co-workers used fetal liver and thymic epithelial
cells for transplantation in a 30-week old fetus 
with bare lymphocyte syndrome [14]. At delivery,
the infant showed a 10% chimerism in peripheral
blood. Interestingly, the patient developed split
chimerism where only T cells were reconstituted,
whereas other immune competent cells were 
still missing. Such split chimerism has also been
observed in cases of severe combined immun-
odeficiency (SCID), where donor derived T-cells
reconstituted whereas only low levels of donor
myeloid and B-cell chimerism have been noted
[15,16]. In patients with B+SCID (B cells present)
a normalisation of T cell number and function 
with a high T cell receptor diversity could be 
observed, whereas in patients with B–SCID 
(B cells missing) a significantly restricted T cell
repertoire could be detected [17]. These differ-
ences might be due to different selection ad-
vantages of donor-derived early T-cell precursors 
and competition with autologous precursors for 
intrathymic differentiation. 

In the cases with erythroid disorders, such as
a or b-thalassaemia, sickle cell anaemia or Rh
isoimmunisation no significant chimerism could
be detected [18–20]. The main problem here

might be related to the present fetal cells in the
bone marrow, since the transplanted cells have no
proliferation advantage. However, in cases of 
thalassaemia, already low-level engraftment at
10–20% could be sufficient to diminish the symp-
toms of the disease [21]. To achieve such engraft-
ment levels other strategies have to be applied.
One key issue seems to be the composition of the
graft. From animal models it is known that co-
transplantation of haematopoietic and mesenchy-
mal stem cells, tandem transplantation of two HSC
samples, third-party transplantation of MSC or
postnatal booster transplantation could increase
engraftment levels [22–25]. Successful engraft-
ment might be a matter of composition of the graft,
but also of cell numbers, as can be concluded from
the case reported by Bambach and co-workers
[26]. In a fetus with globoid cell leukodystrophy
5�109 CD34+ paternal bone marrow cells per kg
were transplanted at 14 weeks gestation. 7 weeks
later the fetus died with overwhelming donor 
cell engraftment and leukostasis. Extramedullary
hematopoiesis occurred in the epicardium, serosa
of the bowel, and the interstitium of the lungs and
kidneys. 

From these clinical experiences it can be con-
cluded that further animal studies are necessary to
study technical and immunological issues related
to in utero stem cell transplantation in detail.

Experiences with the murine model

Initial experiments have been performed using
transplacental injection of haematopoietic stem
cells to cure anaemic mice [27]. 43% of recipient
mice were engraftable for more than 6 months.
Blazar and co-workers optimised the injection
technique by using the intraperitoneal route [28].
They also could show that multilineage long-term
engraftment can be achieved (day 141: 57 to 80%
donor T cells, 10 to 15% donor B cells, 27 to 43%
donor granulocytes). Additionally, they could
prove that adult bone marrow stem cells engraft
longer than 141 days by transferring bone marrow
from an engrafted primary recipient (141 days
after in utero transplantation) into lethally irradi-
ated secondary recipients. It can be speculated that
in utero transplantation in anaemic mice is suc-
cessful because of proliferation advantages of the
healthy donor cells. In immune competent, non-
anaemic mice limited engraftment after in utero
transplantation is due to the competition between
host and donor cells for a limited number of niches.
This might be increased by a postnatal booster in-
jection as has been shown by Milner and co-work-
ers [29]. After an initial in utero transplantation 
of 106 nucleated cells, booster injections of 5�106

nucleated cells at day 2, 4, and 7 after delivery 
resulted in a significantly elevated multilineage en-
graftment with granulocyte predominance (3.30%

donor cells after booster vs 0.69% donor cells in
control cases). Another strategy to increase en-
graftment in non-defective mice makes use of pre-
treated cytotoxic, non-proliferative T cells. After
co-injection with T cell-depleted bone marrow a
significantly better engraftment could be observed
(13.3%) presumably due to a destruction of host
haematopoietic cells without causing Graft versus-
host disease [30].

As in clinical experiences, murine SCID recip-
ients show better engraftment than normal mice,
suggesting that immune effector cells prevent
higher levels of sustained long-term engraftment
[31]. To study this issue, several groups used
NOD/SCID mice recipients, where functional T,
B and NK cells are missing and macrophage func-
tion is defective [31, 32]. Although the majority of
circulating donor cells after in utero transplanta-
tion of haematopoietic stem cells consists of lym-
phocytes, reconstitution of both lymphoid and
myeloid cell lineages could be observed. 

Whereas long-term engraftment is well stud-
ied, only few data are available on early homing of
haematopoietic stem cells after in utero transplan-
tation, although these early events are crucial for
later long-term repopulation. We have therefore
studied the engraftment kinetics up to 48 hours
after transplantation, and 4 to 16 weeks after de-
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livery [33]. NOD/SCID fetal mice were injected
with either 105–106 murine fetal liver cells or
human cord blood-derived CD34+ cells at day 13.5
of gestation. Both donor cell types homed rapidly
and could be detected in peripheral blood and 
fetal liver soon after intraperitoneal injection (see
figure 1). The frequency of xenogeneic stem cells
however rapidly diminished, whereas the alloge-
neic stem cells expanded over time and led to multi-
lineage reconstitution (see table 2). The failure of
human cord blood-derived CD34+ cells to engraft
in the long term might be due to a barrier in the
definitive homing process. or a missing supportive
microenvironment in the host’s bone marrow. Our
results are in accordance with the findings of
Archer et al. who transplanted allogeneic HSC
from bone marrow in utero to NOD/SCID mice
and noticed similar engraftment levels 4 weeks
postnatally (30% in peripheral blood) [31]. Other
groups using immune competent mouse models
achieved much lower engraftment levels (0.69–
10%), which indicates that the fetal immune system
has alloreactivity already at that early stage of 
gestation [28, 34].

Time Peripheral blood Bone marrow Spleen
postnatal n mean SD n mean SD n mean SD

4 weeks 24 22.7% 13.1% 8 0.9% 1.1% 8 37.4% 18.8%

8 weeks 14 41.6% 15.7% na na

12 weeks 11 47.2% 20.7% na na

16 weeks 9 50.0% 17.0% 9 5.1% 4.8% 9 87.7% 7.3%

Table 2

Postnatal long-term
engraftment levels 
of allogeneic donor
cells in peripheral
blood, bone marrow
and spleen of
NOD/SCID mice at
various time points
(n = number of sam-
ples, SD = standard
deviation, na = not
assessed).
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Figure 1 

Prenatal kinetics of
engraftment of donor
cells from cord blood
(circles) and fetal
liver (triangles) found
in fetal liver (figure 1A,
above) and periph-
eral blood (figure 1B,
below) at different
time points after in
utero transplantation.
The donor cell fre-
quency is calculated
as the percentage of
human CD45 (in case
of xenogeneic donor)
or CD45.2 (in case of
allogeneic donor) ex-
pressing cells among
the total of CD45.1
(mean, ±SD).

Experiences with the sheep model

In contrast to the small animal models, sheep
have the advantage of body size. This allows study-
ing technical issues, such as the ultrasound-guided
collection of stem cells from the early ovine fetus
or the injection techniques [35, 36]. Additionally
immunocompetence develops at similar gesta-
tional age compared to human gestation. Though
the development of the immune system is not iden-
tical, the fetal lamb is tolerant to xenogeneic (eg
human) stem cell transplantations before day 60 of
gestation [37]. Furthermore, the relatively long
gestation allows the study of different application
strategies, eg injections at different time points
[22, 38]. In a previous study we were able to de-
crease fetal loss rate to 24% (compared to approx-
imately 50% in surgical procedures), although ul-
trasound-guided transplantation was performed as
early as 45 to 60 days of gestation [38, 39]. 

As stated above, successful in utero transplan-
tation in human fetuses is still limited to cases with
immune defects. To further study the role of for-
eign MHC recognition by the fetal immune sys-
tem, we compared allogeneic versus autologous
stem cell transplantation in the established sheep
model [39]. Autologous fetal liver stem cells were
collected by ultrasound-guided puncture of the
fetal liver at day 50 to 57 of gestation. Allogeneic
fetal liver stem cells were obtained by a surgical
procedure at similar gestational age. In utero
transplantation revealed no significant differences
between allogeneic and autologous short-term
stem cell engraftment (see table 3). However, due
to the more invasive approach, autologous trans-
plantation yielded a higher fetal loss rate (73% ver-
sus 29%). Either the very early transplantation, 
before cell-mediated immune response is elicited,
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resulted in similar early engraftment, or MHC
recognition is not important in the sheep model
[40]. The later theory is supported by experiments
in swine, where in utero transplantation of fully
HLA-mismatched bone marrow-derived stem
cells led to stable multilineage engraftment [41].
The level of engraftment in our studies is low
(below 1%), which is in agreement with the results
of other groups using xenogeneic in utero trans-
plantation [42, 43]. Only few report higher en-
graftment levels in sheep, but with a different set-
ting [22].

In summary, most immune competent animal
models show only low levels of engraftment, as is
the clinical experience. Further research should
address unresolved questions, such as the optimal

time point of transplantation, composition of the
graft and dose of injected stem cells, the role of im-
mune effector cells in the host and as a co-trans-
plant, and methods to induce immune tolerance in
the fetus.
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Tissue Transplantation group n % Donor cells p

Blood Allogeneic 11 0.112 0.928

Autologous 4 0.117

Bone marrow Allogeneic 11 0.560 0.174

Autologous 4 0.160

Liver Allogeneic 11 0.233 0.041

Autologous 4 0.647

Spleen Allogeneic 11 1.140 0.935

Autologous 4 1.067

Thymus Allogeneic 11 0.395 0.396

Autologous 4 0.053

Table 3

Short-term engraft-
ment (1–2 weeks post
partum) of allogeneic
versus autologous
transplantation in
White Alpine sheep
by FACS analysis
(PKH26-labelling).
Mean % donor cells;
t-test (mean, p) or
Mann-Whitney Rank
Sum test (median, p;
if normality test
failed, italics).
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