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Summary

Although progress has been made in the man-
agement of acute leukaemias, most patients who
fail to respond to front-line therapies with cytosta-
tic agents and stem cell transplantation, or who re-
lapse after an initial response die from progressive
disease. Novel treatment modalities exploiting
donor-derived natural killer (NK) cells generate an
alloreactive graft-versus-leukaemia response and
eliminate the residual malignant clones in trans-
planted patients. NK cells are components of the
innate immunity playing an important role in the
surveillance of human tumours. Recognition of
malignant cells depends on a dynamic balance
between antagonistic functions of an array of NK
activating and inhibitory receptors. The natural
cytotoxicity receptors (NCRs) are NK cell-spe-
cific and together with the NKG2D receptor are

responsible for NK cell activation and tumour cell
killing. The killer immunoglobulin-like receptors
(KIRs) recruit phosphatases and can antagonise
the activating signals and prevent the cytolytic NK
cell programme. Understanding of the integration
of these multiple signals at the molecular level is
central for exploring the cytolytic function of NK
cells. This review describes molecular mechanisms
of NK receptor-ligand interactions controlling
target cell recognition and addresses the potential
of NK cells for the specific elimination of leukae-
mic clones with the goal of advancing immuno-
therapy of leukaemia.
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Introduction

Natural killer (NK) cells are potent effectors of
the peripheral immune system. This lymphocyte
subset, phenotypically defined as CD56*CD3-,
has developed as part of protective responses
against microbial pathogens and, according to re-
cent studies, plays an important role in the surveil-
lance and eradication of malignant cells [1, 2].
Upon recognition of tumour- or virus-trans-
formed cells, peripheral NK cells are capable of an
immediate release of the content of cytotoxic gran-
ules and production of inflammatory cytokines,
such as tumour necrosis factor-o (TNF-a) and in-
terferon-y (IFN-y). This illustrates how NK cells
link the innate and adaptive arms of the immune
system [3]. Unlike T lymphocytes, NK cells lack
the ability to recognise antigens in the context of
classical human lymphocyte antigen (HLA) mole-

cules. Instead, NK cell function is regulated by sig-
nals delivered by an array of cell surface receptors
that recognise different cellular ligands and can
discriminate between target and non-target cells
[4, 5]. Engagement of the activating receptors trig-
gers the cytolytic programmes whereas inhibitory
receptors antagonise the activating pathways. This
equilibrium between the opposing signals defines
the NK cells effector function. Recent progress in
understanding this unique mechanism of receptor-
dependent NK cell activity has revitalised interest
in the potential immunotherapeutic value of these
cells [6, 7]. Below, the molecular basis of NK cell
function and current knowledge on the role of NK
cells in immune responses against leukaemia are
reviewed.

NK cell receptors and signalling pathways

NK cell receptors are encoded in the genome,
rather than being generated by somatic recombi-
nation like the antigen-specific components of the

T cell receptor. In contrast to T lymphocytes, NK
cells use the diverse receptor repertoire to screen
potential targets for the presence of specific cell
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Figure 1

Mechanism of NK
cell-mediated cyto-
toxicity. NK cell func-
tion is determined by
a balance of in-
hibitory and activat-
ing signals delivered
upon an interaction
of NK cell receptors
with cognate ligands
on potential target
cells. “Self cells”
express high levels
of HLA class | pro-
tecting them from NK
attack, while cells
become NK targets
after downregulation
of HLA class | and
upregulation of lig-
ands for the activat-
ing receptors.
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surface ligands [4, 8]. Cells are protected from
killing by expression of HLA class I molecules
recognised as “self” by the receptors with inhi-
bitory function. In the absence of this self-recog-
nition and presence of molecules interacting with
the activating receptors, cells become susceptible
to lysis by NK cells. Consequently, a balance of ac-
tivating and inhibitory signals defines the outcome
of NK cell recognition (figure 1). Although many
of the receptors have been discovered in the last
few years, their ligands remain often unknown,
leaving many unresolved questions as to the bio-
logical relevance and molecular basis of the posi-
tive and negative signalling pathways in NK cells.

Inhibitory NK cell receptor signalling

The recognition of polymorphic HLA class I
is a hallmark of NK cell tolerance [9]. Human in-
hibitory receptors belong to two families of trans-
membrane glycoproteins, containing the im-
munoglobulin (Ig)- and lectin-like extracellular
domains [10]. Among them, Killer Ig-like Recep-
tors (KIRs) are the most important in determing
the specificity towards the different alleles of
classical HLA-A, -B and -C molecules. KIRs con-
tain 2 or 3 Ig-like domains, designated 2D or 3D,
and most of them contain long (L) cytoplasmic
tails harbouring the immunoreceptor-tyrosine-
based inhibition motifs (I'TTIMs). Individual KIRs
have specificity for a number of different HLA

Inhibitory receptors
KIR2DL1 (CD158a)
KIR2DL2/3 (CD158b)

Ligands
HLA-Cw2,4,5,6
HLA-Cw1,3,7,8

KIR3DL1 (CD158e) HLA-Bw4

KIR3DL2 (CD158k) HLA-A3, -A11

KIR3DLS unknown

KIR3DL3 unknown

Activatory receptors Ligands

NKG2D ULBP-1, 2, 3, 4; MIC-A, -B
NKp30 unknown

NKp44 unknown

NKp46 unknown

* For comprehensive receptor-ligand list, see ref. 4.

alleles, eg KIR2DL1 for HLA-Cw2, 4, 5, 6, and
KIR2DL2/3 for HLA-Cwl, 3, 7, 8, resulting in a
complex receptor-ligand recognition system (table
1). Upon the engangement of clonally distributed
KIRs by an appropriate HLA class I molecule,
ITIMs become tyrosine phosphorylated and re-
cruit phosphatases to counteract cellular activation
signals. The predominant phosphatases associated
with KIRs are SH2 domain-containing tyrosine
phosphatases SHP-1 and -2, and the inositol-5-
phosphatase, SHIP [11, 12]. The substrates spe-
cific for these phosphatases in NK cells have only
began to be defined and they might depend upon
which of the activating receptors are being modu-
lated (figure 2).

Phosphatases mediate a strong inihibition of
NK-mediated cytolysis, which is dominant over sig-
nals elicited from activating receptors. According-
ly, the NK-dependent killing is impaired in both
naturally-occurring murine mutants and phospha-
tase-knockouts. Of particular interest are SHIP-1-
deficient knockout mice that have a restricted re-
pertoire of NK receptors and a profoundly acti-
vated PI3-kinase/akt pathway in NK cells. As a con-
sequence, SHIP”~ NK cells fail to recognise the
allogeneic targets and do not reject grafts of fully
mismatched bone marrow, suggesting that SHIP
plays an important role in graft rejection limiting
the success of bone marrow transplantation [13].
A recentstudy demonstrated that SHIP-1 functions
also as a negative regulator of IFN-y production by
primary human NK cell subsets [14].

Activating NK cell receptor signalling

NK cells have evolved a large series of activat-
ing receptors which trigger positive signals upon
recognition of target cells [15]. At present many of
these receptors are still orphans regarding the lig-
ands which they recognise. An important family
of receptors is represented by the natural cyto-
toxicity receptors (NCR), which include NKp30,

NKp44, and NKp46 [16]. Surface density of these
receptors correlates with the capacity of NK cells
to kill a large variety of tumour cells [17]. The
haemagglutinin protein of influenza virus has
recently been suggested to interact with NKp44
and NKp46 [18, 19]. However, the cellular ligands
for NCR receptors have not been identified. The
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Figure 2

NK cell receptor-
dependent signalling
pathways. ITAM-
bearing adaptor pro-
teins (CD3(, DAP12);
YxxM-bearing adap-
tor protein DAP10;
PTK, protein tyrosine
kinases; PI3K,
phosho-inositol-3
kinase; SHP and SHIP,
phosphatases. Posi-
tive signalling (+)

by the activating re-
ceptors is counter-
acted by the negative
signalling (-) by the
inhibitory receptors.

lectin-like receptor NKG2D forms a homodimer
expressed by all NK cells, a subset of CD8* and
TCR 6" T cells [20]. The cellular ligands for
NKG2D have been recently identified [21, 22]. In
humans, these ligands belong to two distinct fami-
lies: the MHC class I chain-related (MIC) antigens
containing a short transmembrane domain, and the
ULI16 binding proteins (ULBPs) linked to the
membrane through the GPI anchor (table 1). Acti-
vating signals can also be elicited by KIR receptors
with short (S) cytoplasmic domains lacking the
ITIM sequence motif (KIR2DS and KIR3DS).
Activating signals from NCRs and NKG2D
and several activating NK co-receptors are trans-
mitted by non-covalently associated small trans-
membrane adaptor proteins that possess im-
munoreceptor tyrosine-based activation motifs
(ITAMs) in their cytoplasmic domains. NK cells
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express the I'TAM-bearing CD3{, FceRIy, and
DAP12 adaptor proteins [8]. The downstream
events include phosphorylation of PI3-kinase,
phospholipase C, Syk, Zap70 and other signalling
elements commonly employed by leukocytes (fig-
ure 2) [23-25]. It remains not defined how ligand
recognition by individual receptors is delegated to
independent pathways and how it is assembled to
produce relevant NK cell responses.

Due to unknown ligands for most of the acti-
vating receptors, including all NCRs and some
KIR2/3DS receptors, the knowledge of ligand-de-
pendent NK cell activation is largely derived from
studies on NKG2D ligands. In humans, these lig-
ands are expressed on B- and myeloid-progenitor
cells (26). MIC proteins are upregulated by vari-
ous forms of cellular stress, by viral infection and
on tumour cells of epithelial origin [21, 27, 28]. An
important characteristic of MICs is that they can
be shed by some tumour cells and become de-
tectable in the serum [29, 30]. This may lead to a
permanent downregulation of NKG2D receptor,
together with its functional blockade. This strat-
egy represents a new escape tool used by tumours
otherwise killed upon NKG2D recognition. The
expression pattern of ULBP and MIC proteins
often differs in tumours of various tissue origin,
suggesting functional differences between these
ligands [31, 32]. Therefore, a wide ligand reactiv-
ity of NKG2D may represent a strategy of how
NK cells prevent possible escape mutants which
have downregulated only one ligand.

NK cells and the recognition of human leukaemia

Acute leukaemias are rapidly progressing
blood cell malignancies with a poor prognosis.
High-dose chemotherapy and transplantation of
allogeneic stem cells offer the best chance of cure,
but relapses are frequent and often fatal [33]. High
incidence of disease recurrence suggests that
leukaemic blasts can escape recognition by the im-
mune system. The mechanism of immune evasion
from the NK surveillance may be related to an in-
adequate function of NK cells, caused by abnor-
malities either at the level of receptors or cognate
ligands. Recent studies began to unravel the reac-
tivity of NK cells in primary human leukaemias. In
acute myeloid leukaemia (AML), NK cell number
is profoundly reduced [34] and expression of some
of the activatory NCR receptors may be downreg-
ulated resulting in low NK cell cytotoxicity against
autologous leukaemic cells [35]. In chronic mye-
loid leukaemia (CML), NK cells are reduced in
numbers and their cytokine-induced cytotoxic-

ity is inhibited by CML blasts [36]. Unlike in many
solid tumours, expression of HLA class I molecules
is usually not strongly downregulated, resulting in
tolerance of NK cells towards the autologous
blasts. Furthermore, ligands triggering the
NKG2D receptor and the putative molecules
recognised by NCRs are expressed at low levels,
thus contributing to poor recognition of malignant
cells [26, 37]. We have recently demonstrated that
inadequate ligand expression is a consequence of
haematopoietic maturation arrest associated with
malignant transformation [26]. This is in contrast
to findings with tumours of epithelial origin, in
which the stress-inducible MIC ligands are upreg-
ulated, marking the tumour tissue for destruction
by NK cells [27]. In conclusion, although still frag-
mented, these results suggest that NK cells are
important for tumour surveillance in leukaemia,
providing the rationale for studies on their thera-
peutic value [38].
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The therapeutic potential of NK cells in human leukaemia

The cure of leukaemia and other malignant
blood diseases by transplantation of haematopoi-
etic stem cells (SCT) is achieved by two mecha-
nisms: the cytoreductive chemoradiotherapy which
reduces the bulk of leukaemic blasts, and the
graft-versus-leukaemia (GvL) effect exerted by
donor-derived immune effector cells which eradi-
cate residual malignant clones. Despite 3 decades
of continued progress in the transplantation field,
the relapse rate approaches 30% following allo-
geneic SCT and as much as 50% after SCT of
autologous cells. In patients who are not eligible

for SCT and undergo a conventional high-dose
chemotherapy only, the recurrence rate of the dis-
ease is even more dramatic [39]. These clinical re-
sults underscore, on the one hand, the need for
better understanding of tumour clearance mecha-
nisms, and on the other hand, the search for new
therapeutic approaches to enhance the GvL effect
and improve the cure rates. Recent findings on NK
receptor — ligand specificities, have reawakened an
interest in the possibility of applying the NK cell-
based strategies to treat leukaemia.

Anti-leukaemic effect of alloreactive NK cells

Clinical results, initiated by Ruggeri et al. [40],
suggest that NK cells may represent a unique ther-
apeutic tool for clearance of leukaemia, in particu-
lar in conjunction with allogeneic SCT. In AML
patients grafted with stem cells from haploidenti-
cal donors, the mismatch between KIRs on NK
cells of the graft and HLA class I specificities of the
recipient has facilitated NK cell-mediated killing of
tumour cells, thus resulting in higher remission
rates. This benefit of KIR receptor-ligand alloreac-
tivity to promote engraftment and GvL effects
without causing clinically overt graft-versus-host
disease (GvHD) is increasingly recognised also in
other SCT settings. The survival advantage associ-
ated with KIR ligand incompatibility has been re-

ported in numerous haematological malignancies
and with grafts derived from unrelated donors [41]
as well HLA-matched siblings [42, 43]. Anti-leu-
kaemic effects of KIR/HLA class I mismatches
are also suggested by the experimental finding that
blocking of murine inhibitory receptors Ly-49C
with specific antibody increases NK cell-mediated
killing of leukaemic cells iz vitro and in tumour-
bearing mice [44]. In addition to the anti-leukaemic
NK cytotoxicity exerted through KIR-HLA dis-
parity, NKG2D receptor-ligand interactions were
shown to play a role in the cytolytic effect of
HLA-matched NK cells againstst CML blasts [45].
A clinical impact of leukaemia recognition by NK
activating receptors awaits further evaluation.

NK cell adoptive immunotherapy in treatment of leukaemia

The field of tumour immunotherapy is domi-
nated by T cell-based approaches while clinical tri-
als to utilise the anti-tumour effect of NK cells had
little success in the past. This may rapidly change
with a significant progress in identification of NK
cell receptors and some of their ligands involved in
selective recognition and lysis of tumour cells. The
cellular immunotherapy by infusion of immune
competent cells in the clinical SCT setting is ex-
pected to amplify the GvL effect exerted by the
transplanted immune system. The clinical feasi-
bility and efficacy of adoptive transfer of donor-
derived T lymphocytes has been documented in
CML,; consequently, donor lymphocyte infusion
(DLI) after SCT has become an established ther-
apy in haematological malignancies [46, 47].

Adoptive transfer of activated NK cells in an allo-
geneic murine transplant model has shown the
participation of these cells in GvL without induc-
ing clinically overt GvHD [48]. Pilot clinical stud-
ies of an adoptive transfer of donor-derived NK
cells to consolidate engraftment in AML patients
transplanted from haploidentical donors have re-
cently been reported [49, 50]. NK cell infusions
were well tolerated, none of the patients developed
GvHD, and importantly, donor-type chimerism
was increased in some recipients. These studies,
although involving a limited number of patients,
documented the feasibility of NK cell DLI, open-
ing the way for future graft engineering to exploit
the clinical benefit of anti-leukaemic NK cells.
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Future perspectives

Alloreactive NK cells may become an integral
part of treating leukaemia with SCT from unre-
lated and from family donors. Based on in vitro and
preclinical studies, NK cells are capable of pro-
moting engraftment, protecting against GvHD,
and exerting GvL effects [40, 51]. Therefore, in-
cluding NK cells into a conditioning regimen and
infusing them after SCT may prevent the progress
of leukaemia, facilitate stem cell engraftment, and
perhaps even serve to treat GvHD and relapse
[52-54]. Many open issues include not only appro-
priate selection of donors and recipients, but also
NK cell dose, timing of infusions and possible
ex-vivo manipulations of NK cells prior to DLI.
Expansion of clinical grade NK cells has been
reported [55] and the use of ex-vivo cytokine-ac-
tivated NK cells awaits clinical evaluation.

Also the antileukaemic potential of autologous

NK cells deserves a therapeutic consideration. A
number of studies documented a susceptibility of
leukaemic blasts to autologous cytotoxicity by NK
cells [56, 57]. According to our recent studies [33],
AMUL-derived NK cells can be substantially ex-
panded and activated in vitro, and are fully func-
tional against autologous AML blasts by effectively
reducing the tumour load when infused to AML-
bearing NOD/SCID mice (figure 3). Adoptive
transfer of autologous NK cells may represent a
novel immunotherapeutic strategy in the manag-
ment of leukaemia in patients not eligible for SCT,
due to age or lack of a suitable donor. Clinical
translation of a continuing progress in understand-
ing the mechanisms involved in NK cell-mediated
immunity will define the importance of NK cells
as specialised cellular tools for enhancing the anti-
leukaemic immune response.

Figure 3

NK cell immunotherapy in NOD/SCID mice:
Adoptive transfer of activated AML-NK cells
eradicates human AML blasts in vivo.
NOD/SCID mice were transplanted with human
AML blasts and subsequently infused with
AML-derived NK cells. The blasts content in the
bone marrow (open circles) was dramatically
reduced at 1 week after adoptive transfer of NK
cells (closed circles), and AML blasts in the
bone marrow (arrows) were not visible after
NK cell infusions [33].
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