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Inflammation and coagulation play pivotal
roles in host defence. As phylogenetically old re-
sponses, there is extensive cross-talk between in-
flammation and coagulation in enabling an ade-
quate immune response against potentially injuri-
ous stimuli. Immune cells are important in the
initiation of coagulation pathways, while various
inflammatory mediators are capable of altering
haemostasis. Vice versa, coagulation proteases

have significant immunomodulatory effects. Un-
derstanding the mechanisms involved in the cross-
talk between inflammation and coagulation may
yield new therapeutic strategies for human dis-
eases.
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Severe infections are characterised by an acute
inflammatory response, and are almost invariably
accompanied by alterations of the coagulation sys-
tem [1]. The activation of both the immune system
and the coagulation system are not merely associ-
ated in time, but there has been extensive cross-
talk between the two systems throughout verte-
brate evolution [2]. 

The primary goal of the immune system obvi-
ously is host defence. Upon injury by a microor-
ganism, immune cells are recruited and proinflam-
matory cytokines are generated. Also coagulation
is almost immediately activated, directed at con-
finement and sequestration of the harmful in-

truder. While localised inflammation and clotting
clearly have host-protective functions, it is consid-
ered disadvantageous when the inflammatory re-
sponse is not limited to the primary site of injury
and spreads through the body. The detrimental ef-
fects of generalised clotting are best exemplified in
the clinical syndrome of sepsis: the systemic in-
flammatory response and accompanying excessive
coagulation activation lead to consumption of clot-
ting factors and widespread depositions of fibrin,
causing diffuse endothelial damage, multiple organ
dysfunction, and eventually death [1]. In this review,
we will discuss the bi-directional relationship be-
tween inflammation and coagulation. 
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Introduction

Inflammation induces activation of coagulation

In the activation of coagulation in disease
states, tissue factor (TF) plays a central role. Under
normal conditions, only small amounts of TF
reach circulating blood, but in inflammatory states
monocytes can express TF on their surface [3].
Also microparticles from activated platelets and
endothelial cells may serve as additional sources of
TF [4], but their significance in vivo is under on-
going debate [5–8]. TF binds and activates factor

VII (FVIIa), out of which the coagulation network
is activated and thrombin is generated. Thrombin
converts fibrinogen into fibrin and induces platelet
aggregation, forming a clot. In models of experi-
mental sepsis or endotoxaemia, inhibition of the
TF-FVIIa complex was repeatedly shown to limit
coagulopathy and lethality [9–11], while mice
expressing low levels of TF on haematopoietic
cells were less likely to show excessive coagulation
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after endotoxin-challenge, resulting in less mortal-
ity [12]. 

Proinflammatory cytokines are important me-
diators of activation of coagulation. Infusion of tu-
mour necrosis factor (TNF)-a into healthy human
volunteers induced not only signs of a systemic
inflammatory response, but also activation of
coagulation as indicated by an increase in plasma
concentrations of the prothrombin fragment F1+2
[13]. However, blocking TNF-a with monoclonal
antibodies did not neutralise coagulation activa-
tion during endotoxaemia in chimpanzees [14].

Rather, blocking interleukin (IL)-6 attenuated
activation of coagulation in the same model of
endotoxaemia, both systemically and locally in the
bronchoalveolar compartment [15, 16]. This sug-
gested that IL-6 was the most important mediator
in inflammation-induced coagulation. Hence, the
proinflammatory cytokines IL-6 and TNF-a
establish a procoagulant shift in the haemostatic
balance, promoting fibrin generation in severe
inflammatory states, both systemically and locally
(figure 1). 

Inflammation-induced coagulation is not counterbalanced

There are other mechanisms promoting in-
flammation-induced clotting, ie, a relative insuffi-
ciency of the natural anticoagulant systems, and a
simultaneous suppression of the fibrinolytic sys-
tem. Once again, proinflammatory cytokines are –
at least partially  – responsible for these effects
(figure 1). 

Mechanisms that regulate the coagulation sys-
tem under normal conditions involve natural in-
hibitors of coagulation, including antithrombin,
activated protein C (APC), and tissue factor path-
way inhibitor (TFPI). In general, they interfere
with the activation of coagulation, but on different
levels: TFPI complexes with factor Xa and inhibits
TF-FVIIa; APC inactivates factors Va and VIIIa,
thereby abrogating thrombin generation; anti-
thrombin neutralises many enzymes in the coag-
ulation network, including thrombin, factors Xa,
and IXa. In patients with sepsis, systemic levels of
antithrombin and protein C are decreased, because
of increased consumption, impaired synthesis, and
degradation [17, 18]. In addition, thrombomod-
ulin – the pivotal mediator of thrombin-induced

protein C activation – is down-regulated at the en-
dothelial surface by proinflammatory cytokines,
such as TNF-a and IL-1b, resulting in dysfunc-
tion of the protein C system [19–22]. The impor-
tance of the protein C pathway has been demon-
strated in numerous preclinical studies. Blockade
of the protein C system resulted in an increased
mortality after a Gram-negative challenge in ba-
boons [23, 24]. Conversely, infusion of APC re-
sulted in improved survival after a lethal Gram-
negative challenge [25], while a 96-hour infusion
of recombinant human (rh-)APC was shown to im-
prove survival in patients with severe sepsis [26].
TFPI also plays a relevant role in coagulopathy.
TFPI depletion sensitised rabbits to diffuse in-
travascular coagulation induced by TF-infusion
[27]. Moreover, TFPI infusion protected against
mortality in baboons infused with endotoxin or
Escherichia coli [28], and in mice and rabbits with
abdominal sepsis [29, 30]. Most recently, Chen et al.
generated transgenic mice expressing hirudin and
human TFPI at the surface of activated endothe-
lium, eg, after endotoxin challenge [31]. These

Figure 1

Inflammation-in-
duced coagulation
Upon intrusion by a
microorganism,
tissue factor (TF) up-
regulation is induced
on mononuclear cells
(not shown in figure).
Also, within hours
the immune system
produces a number
of cytokines, such as
tumour necrosis fac-
tor-a (TNF-a) and in-
terleukin-6 (IL-6). IL-6
induces up-regula-
tion of TF on the cell
surface, causing
thrombin-mediated
fibrin depositions.
The activation of
coagulation is regu-
lated by the natural
inhibitors of coagula-
tion, ie, tissue factor
pathway inhibitor
(TFPI), activated
protein C (APC), and
antithrombin (AT).
However, TNF-a
decreases the expres-
sion of these in-
hibitors. Finally, fibri-
nolysis is inhibited
(FDP, fibrin degrada-
tion products), be-
cause up-regulation
of plasminogen acti-
vator type 1 (PAI-1)
suppresses plas-
minogen activation
(urokinase-type and
tissue-type plasmino-
gen activators, uPA
and tPA).
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mice were protected against coagulopathy during
endotoxaemia, and the authors speculated that pa-
tients with sepsis would benefit from endothelium-
targeted anticoagulant treatment [31]. Finally, 
rh-TFPI effectively and dose-dependently attenu-
ated the endotoxin-induced coagulation activation
in humans [32]. However, treatment with rh-TFPI
failed to improve patient outcome in human sep-
sis [33]. Perhaps the applied dose was sufficient for
anticoagulant effects, but not for significant anti-
inflammatory effects [34].

Inhibition of the fibrinolytic system is another
event that facilitates fibrin deposition in the pres-
ence of proinflammatory cytokines. Clearly, the
procoagulant state caused by TNF-a is accompa-

nied by inhibition of fibrinolysis [13, 35]. In the
acute inflammatory response fibrinolysis is imme-
diately increased by plasminogen activators, which
are released from the endothelium. Subsequently
plasminogen activation is hampered by a sustained
increase in plasminogen activator inhibitor type-1
(PAI-1) [35]. Both TNF-a and IL-1b have been
found to exert antifibrinolytic effects by stimulat-
ing the release of PAI-1, and by reducing the re-
lease of tissue-type plasminogen activator [36, 37]. 

To summarise the effects of severe inflamma-
tion on haemostasis, high levels of circulating pro-
inflammatory cytokines cause massive systemic
activation of coagulation while seriously inhibiting
both fibrinolysis and natural anticoagulation. 

Coagulation proteases modulate inflammation

Activation of coagulation promotes an accel-
erated inflammatory response via various mecha-
nisms. In particular, coagulation proteases interact
with protease-activated receptors (PARs), which
are believed to play a key role in translating coag-
ulation products into inflammatory signals [38].
PARs are transmembrane proteins that are ex-
pressed on the surface of mononuclear cells and
endothelial cells among others, and currently 4
types (PAR-1 through -4) have been identified
[38]. Upon proteolytic cleavage by an activated co-
agulation factor, a PAR is able to activate itself by
the exposed neoamino terminus. 

Thrombin exerts its proinflammatory effects
mainly through the PAR-1, but also has high affin-
ity for PAR-3 and -4 [38]. Thrombin thereby in-
duces up-regulation of various proinflammatory
cytokines in vitro, including monocyte chemotac-
tic protein-1, IL-6, IL-8, and macrophage migra-

tion inhibitory factor [39–43]. In addition, acting
through nuclear factor-kB, it enhances expression
of adhesion molecules, promoting leukocyte adhe-
sion [44]. Similar effects have been described for
factor Xa and the TF-VIIa complex [45, 46]. Bind-
ing of the latter to PAR-2 also results in up-regu-
lation of inflammatory responses in macrophages
and was shown to affect neutrophil infiltration and
proinflammatory cytokines TNF-a and IL-1b
expression [47]. In vivo evidence for the role of
coagulation-induced inflammation comes from
experiments in which rh-FVIIa induced a 3- to 
4-fold rise in plasma levels of IL-6 and IL-8 in
healthy human subjects [48].

Taken together, a number of coagulation pro-
teases exert proinflammatory effects on cells and
through cell-cell interactions, creating an amplifi-
cation route for even more inflammation and
coagulation.

Figure 2

Proposed mecha-
nisms of protease-
activated receptor
(PAR)-1 mediated
regulation of vascu-
lar integrity. Throm-
bin (FIIa) disrupts the
vascular barrier by
PAR-1 cleavage (left).
Activated protein C
(APC) binds to the
endothelial protein C
receptor (EPCR) and
has barrier protective
effects either by di-
rect sphingosine 
1-phosphate recep-
tor-1 (S1P1) cross-
activation or indi-
rectly via PAR-1
(right). Models are as
proposed in [55, 56].



The relationship between inflammation and the coagulation system 142

Recently, the effects of APC on PARs have re-
ceived much attention. Part of it has been inspired
by the human sepsis trial in which rh-APC was
shown to reduce mortality [26]; it was clear that,
although sepsis patients with more severe coagu-
lation abnormalities benefited most from APC
therapy [49], the beneficial effects of APC were not
solely dependent on its anticoagulant activity [50].
The most consistent finding from preclinical stud-
ies is the effect of APC on leukocyte adhesion and
extravasation. In animal models of endotoxaemia
APC was shown to reduce leukocyte extravasation
and tissue accumulation [51–54]. Nick et al. repro-
duced these finding in human volunteers who un-
derwent bronchial instillation of endotoxin: intra-
venous infusion with APC prevented leukocyte in-
filtration into the lungs [53], and largely preserved
normal bronchoalveolar haemostasis [55]. 

To date, several cellular mechanisms have been
proposed to clarify these in vivo effects. APC ex-
erts many anti-inflammatory effects in vitro, eg,
inhibition TNF-a production by monocytes/
macrophages, suppression of NF-kB expression,

inhibition of cytokine signalling, interference with
cytokine-induced up-regulation of cell surface
leukocyte adhesion molecules and genes related to
inflammation [56–59]. Riewald et al. proposed that
PAR-1 was a major target of APC signalling [60],
but it remained unclear how the same signalling
receptor could possess both pro- and anti-inflam-
matory effects, dependent on the protease in-
volved. New studies suggest that APC bound to
endothelial protein C receptor may exert protec-
tive effects on the vascular barrier via sphingosine
1-phosphate receptor-1 cross-activation; either
directly or via PAR-1 [61, 62]. However, the in vivo
relevance of APC-mediated PAR-1 activation has
been challenged [63], since the described cellular
effects of APC in vitro are at concentrations much
higher than achieved during the treatment of se-
vere sepsis. Compared to thrombin, approximately
a thousand- to ten thousand-fold higher concen-
trations of APC are needed for PAR-1 activation
[64]. Indeed, the anti-inflammatory effects of 
rh-APC in patients with sepsis were shown to be
very modest [26, 65].

The protein C pathway and the effects on innate immunity

Conclusion

Inflammation and coagulation have reciprocal
amplifying effects, potentially constituting an en-
vironment that is highly proinflammatory and pro-
coagulant in severe disease states. Elucidating the
mechanisms of cross-talk between coagulation and
inflammation increases our understanding of the
pathological and pathophysiological events of se-
vere clinical diseases, and may yield new therapeu-
tic targets in the near future.
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